Normalized defining polynomial
\( x^{21} - 119 x^{15} - 102 x^{14} + 490 x^{9} + 840 x^{8} + 360 x^{7} - 343 x^{3} - 882 x^{2} - 756 x - 216 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(269309669801808513835250991351016462192214016=2^{18}\cdot 3^{18}\cdot 7^{36}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $130.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} - \frac{4}{13} a^{2} - \frac{5}{13} a - \frac{4}{13}$, $\frac{1}{13} a^{15} - \frac{4}{13} a^{3} - \frac{5}{13} a^{2} - \frac{4}{13} a$, $\frac{1}{13} a^{16} - \frac{4}{13} a^{4} - \frac{5}{13} a^{3} - \frac{4}{13} a^{2}$, $\frac{1}{13} a^{17} - \frac{4}{13} a^{5} - \frac{5}{13} a^{4} - \frac{4}{13} a^{3}$, $\frac{1}{13} a^{18} - \frac{4}{13} a^{6} - \frac{5}{13} a^{5} - \frac{4}{13} a^{4}$, $\frac{1}{3639168} a^{19} + \frac{6665}{303264} a^{18} + \frac{529}{33696} a^{17} + \frac{17}{4212} a^{16} - \frac{43}{2808} a^{15} - \frac{1}{78} a^{14} + \frac{132781}{279936} a^{13} + \frac{14357}{46656} a^{12} - \frac{2051}{7776} a^{11} + \frac{293}{1296} a^{10} - \frac{11}{216} a^{9} + \frac{17}{36} a^{8} + \frac{303509}{1819584} a^{7} - \frac{3}{13} a^{6} + \frac{2}{13} a^{5} + \frac{1}{13} a^{4} - \frac{6}{13} a^{3} + \frac{4}{13} a^{2} + \frac{559529}{3639168} a - \frac{233329}{606528}$, $\frac{1}{1018734133248} a^{20} + \frac{6665}{169789022208} a^{19} + \frac{44422225}{28298170368} a^{18} + \frac{31731929}{4716361728} a^{17} - \frac{17376863}{786060288} a^{16} - \frac{3909463}{131010048} a^{15} - \frac{32094055991}{1018734133248} a^{14} - \frac{3509}{11664} a^{13} + \frac{779}{1944} a^{12} - \frac{65}{324} a^{11} + \frac{17}{54} a^{10} + \frac{4}{9} a^{9} + \frac{169789022453}{509367066624} a^{8} + \frac{125615}{6530347008} a^{7} - \frac{3}{13} a^{6} - \frac{5}{13} a^{5} + \frac{5}{13} a^{4} + \frac{3}{13} a^{3} - \frac{36168075763}{78364164096} a^{2} + \frac{32650591919}{84894511104} a + \frac{8706802745}{28298170368}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 185340932015000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 192036096000 |
| The 587 conjugacy class representatives for t21n158 are not computed |
| Character table for t21n158 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | $21$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 2.12.12.16 | $x^{12} - 16 x^{10} - 23 x^{8} + 24 x^{6} - 29 x^{4} - 8 x^{2} - 13$ | $2$ | $6$ | $12$ | 12T134 | $[2, 2, 2, 2, 2, 2]^{6}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.9.9.9 | $x^{9} + 18 x^{5} + 27 x^{2} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| 3.9.9.7 | $x^{9} + 18 x^{3} + 54 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ | |
| 7 | Data not computed | ||||||