Normalized defining polynomial
\( x^{21} - 10 x^{20} - 64 x^{19} + 1060 x^{18} - 414 x^{17} - 43164 x^{16} + 143514 x^{15} + 756375 x^{14} - 5147167 x^{13} - 1076463 x^{12} + 81715797 x^{11} - 172342538 x^{10} - 513277027 x^{9} + 2674733564 x^{8} - 1554424873 x^{7} - 14048843964 x^{6} + 35554134906 x^{5} - 7390105232 x^{4} - 106207754284 x^{3} + 210434894369 x^{2} - 176222639918 x + 58288245703 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2198467635783681876948922104226037199687332257=13^{7}\cdot 109^{7}\cdot 437789723053^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $144.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 109, 437789723053$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} + \frac{1}{7} a^{13} - \frac{1}{7} a^{12} - \frac{3}{7} a^{10} - \frac{1}{7} a^{9} + \frac{1}{7} a^{8} + \frac{2}{7} a^{7} + \frac{1}{7} a^{5} + \frac{3}{7} a^{4} - \frac{1}{7} a^{3} + \frac{3}{7} a^{2} - \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{16} + \frac{1}{7} a^{14} - \frac{1}{7} a^{13} - \frac{3}{7} a^{11} - \frac{1}{7} a^{10} + \frac{1}{7} a^{9} + \frac{2}{7} a^{8} + \frac{1}{7} a^{6} + \frac{3}{7} a^{5} - \frac{1}{7} a^{4} + \frac{3}{7} a^{3} - \frac{1}{7} a^{2} + \frac{2}{7} a$, $\frac{1}{7} a^{17} - \frac{1}{7} a^{14} - \frac{1}{7} a^{13} - \frac{2}{7} a^{12} - \frac{1}{7} a^{11} - \frac{3}{7} a^{10} + \frac{3}{7} a^{9} - \frac{1}{7} a^{8} - \frac{1}{7} a^{7} + \frac{3}{7} a^{6} - \frac{2}{7} a^{5} - \frac{1}{7} a^{2} + \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{49} a^{18} + \frac{2}{49} a^{17} - \frac{2}{49} a^{16} - \frac{19}{49} a^{14} - \frac{8}{49} a^{13} + \frac{8}{49} a^{12} + \frac{8}{49} a^{11} + \frac{24}{49} a^{10} - \frac{5}{49} a^{9} + \frac{8}{49} a^{8} - \frac{11}{49} a^{7} - \frac{19}{49} a^{6} - \frac{23}{49} a^{5} - \frac{16}{49} a^{4} + \frac{6}{49} a^{3} - \frac{3}{49} a^{2} - \frac{5}{49} a - \frac{9}{49}$, $\frac{1}{49} a^{19} + \frac{1}{49} a^{17} - \frac{3}{49} a^{16} + \frac{2}{49} a^{15} + \frac{16}{49} a^{14} - \frac{4}{49} a^{13} + \frac{6}{49} a^{12} + \frac{22}{49} a^{11} + \frac{17}{49} a^{10} + \frac{11}{49} a^{9} + \frac{22}{49} a^{8} - \frac{11}{49} a^{7} - \frac{20}{49} a^{6} + \frac{16}{49} a^{5} + \frac{10}{49} a^{4} - \frac{8}{49} a^{3} + \frac{15}{49} a^{2} + \frac{22}{49} a - \frac{3}{49}$, $\frac{1}{20845456192692299227144310356453833442852320133252012983513737327167} a^{20} + \frac{60249321366356670443414182321382359898502889516664507384579145613}{20845456192692299227144310356453833442852320133252012983513737327167} a^{19} + \frac{46691151071506705699725112806279388429746231050016358600595595563}{20845456192692299227144310356453833442852320133252012983513737327167} a^{18} + \frac{1433380214014992783847301013021451096131624917709465258859133736698}{20845456192692299227144310356453833442852320133252012983513737327167} a^{17} + \frac{104812164576165666810348788544352609601420669482762381529829558676}{2977922313241757032449187193779119063264617161893144711930533903881} a^{16} - \frac{673959738784758402350395733629572370840953424308455354321353242112}{20845456192692299227144310356453833442852320133252012983513737327167} a^{15} + \frac{6042739969116426290653707692725046424328233992020855890544451764419}{20845456192692299227144310356453833442852320133252012983513737327167} a^{14} + \frac{6897005915093608641070958452280066267802039296499314953333578355606}{20845456192692299227144310356453833442852320133252012983513737327167} a^{13} + \frac{3541541080519991021004157084979330562544419705251799575657274433877}{20845456192692299227144310356453833442852320133252012983513737327167} a^{12} - \frac{176757018499484978450822591528017146422523405134501784139191226391}{425417473320251004635598170539874151894945308841877815990076271983} a^{11} - \frac{6050342553214647354864879882917944001201974575851646836956397617819}{20845456192692299227144310356453833442852320133252012983513737327167} a^{10} + \frac{2617173808734482742124864220759989881973732948446058000471387884515}{20845456192692299227144310356453833442852320133252012983513737327167} a^{9} - \frac{996828983288281853525060007168071817058416990699249642732881386388}{2977922313241757032449187193779119063264617161893144711930533903881} a^{8} + \frac{3187812147413431055572364982700657151749883122754071606333395759937}{20845456192692299227144310356453833442852320133252012983513737327167} a^{7} - \frac{5669423752746677918507552395417542955835652078750166027894529665309}{20845456192692299227144310356453833442852320133252012983513737327167} a^{6} - \frac{5790134206570001784152905510564329413352002938955144857948064592851}{20845456192692299227144310356453833442852320133252012983513737327167} a^{5} - \frac{9630540721685546258737900117026313902285896174138234985527753717915}{20845456192692299227144310356453833442852320133252012983513737327167} a^{4} + \frac{6414778082907879379360394065073214744493381551528261350002200377824}{20845456192692299227144310356453833442852320133252012983513737327167} a^{3} + \frac{133798423636177585303770465057904964046327975187852069631961668565}{425417473320251004635598170539874151894945308841877815990076271983} a^{2} - \frac{4502878198652193899582116832835291161738148471281543761777648799518}{20845456192692299227144310356453833442852320133252012983513737327167} a - \frac{9234761951350747436974641980749912071159538205079951578221680141185}{20845456192692299227144310356453833442852320133252012983513737327167}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 128035498196000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 734832 |
| The 72 conjugacy class representatives for t21n119 are not computed |
| Character table for t21n119 is not computed |
Intermediate fields
| 7.3.2007889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 109 | Data not computed | ||||||
| 437789723053 | Data not computed | ||||||