Normalized defining polynomial
\( x^{21} - 4 x^{20} - 88 x^{19} + 492 x^{18} + 2722 x^{17} - 23456 x^{16} - 18278 x^{15} + 554053 x^{14} - 909739 x^{13} - 6314467 x^{12} + 25005205 x^{11} + 14407592 x^{10} - 254496351 x^{9} + 409718150 x^{8} + 801650743 x^{7} - 3772994826 x^{6} + 3833766726 x^{5} + 6136704108 x^{4} - 22567165772 x^{3} + 29014890807 x^{2} - 18533507650 x + 4925133913 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(197997820955299038370240503694580326709547553=13^{7}\cdot 109^{7}\cdot 193^{2}\cdot 277^{2}\cdot 2457529^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 109, 193, 277, 2457529$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} - \frac{3}{7} a^{14} + \frac{1}{7} a^{12} + \frac{2}{7} a^{11} - \frac{1}{7} a^{10} - \frac{3}{7} a^{9} - \frac{3}{7} a^{8} - \frac{2}{7} a^{7} - \frac{3}{7} a^{6} - \frac{3}{7} a^{5} - \frac{2}{7} a^{4} - \frac{1}{7} a^{3} + \frac{3}{7} a$, $\frac{1}{7} a^{16} - \frac{2}{7} a^{14} + \frac{1}{7} a^{13} - \frac{2}{7} a^{12} - \frac{2}{7} a^{11} + \frac{1}{7} a^{10} + \frac{2}{7} a^{9} + \frac{3}{7} a^{8} - \frac{2}{7} a^{7} + \frac{2}{7} a^{6} + \frac{3}{7} a^{5} - \frac{3}{7} a^{3} + \frac{3}{7} a^{2} + \frac{2}{7} a$, $\frac{1}{7} a^{17} + \frac{2}{7} a^{14} - \frac{2}{7} a^{13} - \frac{2}{7} a^{11} - \frac{3}{7} a^{9} - \frac{1}{7} a^{8} - \frac{2}{7} a^{7} - \frac{3}{7} a^{6} + \frac{1}{7} a^{5} + \frac{1}{7} a^{3} + \frac{2}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{49} a^{18} - \frac{3}{49} a^{16} - \frac{3}{49} a^{15} + \frac{5}{49} a^{14} + \frac{4}{49} a^{13} - \frac{22}{49} a^{12} + \frac{3}{49} a^{11} - \frac{22}{49} a^{10} - \frac{20}{49} a^{9} - \frac{3}{49} a^{8} + \frac{20}{49} a^{7} + \frac{24}{49} a^{6} + \frac{6}{49} a^{5} + \frac{11}{49} a^{4} + \frac{16}{49} a^{3} - \frac{24}{49} a^{2} - \frac{2}{7} a$, $\frac{1}{49} a^{19} - \frac{3}{49} a^{17} - \frac{3}{49} a^{16} - \frac{2}{49} a^{15} - \frac{24}{49} a^{14} - \frac{22}{49} a^{13} - \frac{4}{49} a^{12} + \frac{13}{49} a^{11} - \frac{13}{49} a^{10} + \frac{18}{49} a^{9} - \frac{8}{49} a^{8} - \frac{11}{49} a^{7} - \frac{22}{49} a^{6} - \frac{17}{49} a^{5} - \frac{19}{49} a^{4} - \frac{17}{49} a^{3} - \frac{2}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{384385880741815645433783807692156883607787301577979877075327} a^{20} - \frac{81769324317721948324193800110020246717494576803181040392}{384385880741815645433783807692156883607787301577979877075327} a^{19} - \frac{3262380431825582707952776877591164097761614343153638354567}{384385880741815645433783807692156883607787301577979877075327} a^{18} - \frac{21288154863752120073196582167074608345332263595266191743745}{384385880741815645433783807692156883607787301577979877075327} a^{17} + \frac{18808823208653207436229396039272742092984016914412187560323}{384385880741815645433783807692156883607787301577979877075327} a^{16} - \frac{13320421625927240432927744007549226961024450861953414347637}{384385880741815645433783807692156883607787301577979877075327} a^{15} + \frac{5004648432185848507273093870708203210472836880115060608365}{384385880741815645433783807692156883607787301577979877075327} a^{14} + \frac{186123068098490915059432537038659505879081759978311982236680}{384385880741815645433783807692156883607787301577979877075327} a^{13} + \frac{16168341063747073465791253223952729666832276119908856229318}{384385880741815645433783807692156883607787301577979877075327} a^{12} + \frac{109811987017681520096715795302866186602287050777222179067161}{384385880741815645433783807692156883607787301577979877075327} a^{11} - \frac{119777639409531872647422192699143232863003656737853061509904}{384385880741815645433783807692156883607787301577979877075327} a^{10} + \frac{1832403101840920162852378024498653399384278933241910190768}{54912268677402235061969115384593840515398185939711411010761} a^{9} + \frac{183821078457209938700362130613013968470047232102735348885782}{384385880741815645433783807692156883607787301577979877075327} a^{8} + \frac{72456620049303940698974256128180898051404615830432185242626}{384385880741815645433783807692156883607787301577979877075327} a^{7} + \frac{179009549511276382853279818865721974715743761432633596066515}{384385880741815645433783807692156883607787301577979877075327} a^{6} + \frac{76407032403292054628194541351600650315985907748249025292509}{384385880741815645433783807692156883607787301577979877075327} a^{5} - \frac{119736568299034860889309790920603051056016261499460521098569}{384385880741815645433783807692156883607787301577979877075327} a^{4} + \frac{24322457537547820529340629955098443871654834712727690488709}{384385880741815645433783807692156883607787301577979877075327} a^{3} + \frac{185964285796876256151157060254303154934035983905818519331265}{384385880741815645433783807692156883607787301577979877075327} a^{2} + \frac{7713626730638932117497583011358034210499016182038360068686}{54912268677402235061969115384593840515398185939711411010761} a + \frac{692843326240219404956327306468252657874961544273465820315}{7844609811057462151709873626370548645056883705673058715823}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29091941771600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 734832 |
| The 72 conjugacy class representatives for t21n119 are not computed |
| Character table for t21n119 is not computed |
Intermediate fields
| 7.3.2007889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 109 | Data not computed | ||||||
| $193$ | 193.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 193.3.2.3 | $x^{3} - 4825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 193.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 193.12.0.1 | $x^{12} + x^{2} - 2 x + 17$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 277 | Data not computed | ||||||
| 2457529 | Data not computed | ||||||