Normalized defining polynomial
\( x^{21} - 2 x^{20} - 2 x^{19} + 26 x^{18} - 25 x^{17} - 37 x^{16} + 153 x^{15} - 69 x^{14} - 124 x^{13} + 277 x^{12} - 70 x^{11} - 106 x^{10} + 228 x^{9} - 76 x^{8} - 41 x^{7} + 116 x^{6} - 32 x^{5} - 16 x^{4} + 25 x^{3} - 2 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(159763501833017076073675531441=11^{14}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} - \frac{4}{11} a^{12} + \frac{2}{11} a^{11} - \frac{3}{11} a^{10} - \frac{4}{11} a^{9} + \frac{1}{11} a^{8} - \frac{2}{11} a^{7} + \frac{5}{11} a^{6} - \frac{1}{11} a^{5} + \frac{1}{11} a^{4} + \frac{2}{11} a^{3} + \frac{5}{11} a^{2} - \frac{4}{11} a - \frac{4}{11}$, $\frac{1}{11} a^{14} - \frac{3}{11} a^{12} + \frac{5}{11} a^{11} - \frac{5}{11} a^{10} - \frac{4}{11} a^{9} + \frac{2}{11} a^{8} - \frac{3}{11} a^{7} - \frac{3}{11} a^{6} - \frac{3}{11} a^{5} - \frac{5}{11} a^{4} + \frac{2}{11} a^{3} + \frac{5}{11} a^{2} + \frac{2}{11} a - \frac{5}{11}$, $\frac{1}{11} a^{15} + \frac{4}{11} a^{12} + \frac{1}{11} a^{11} - \frac{2}{11} a^{10} + \frac{1}{11} a^{9} + \frac{2}{11} a^{7} + \frac{1}{11} a^{6} + \frac{3}{11} a^{5} + \frac{5}{11} a^{4} - \frac{5}{11} a^{2} + \frac{5}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{16} - \frac{5}{11} a^{12} + \frac{1}{11} a^{11} + \frac{2}{11} a^{10} + \frac{5}{11} a^{9} - \frac{2}{11} a^{8} - \frac{2}{11} a^{7} + \frac{5}{11} a^{6} - \frac{2}{11} a^{5} - \frac{4}{11} a^{4} - \frac{2}{11} a^{3} - \frac{4}{11} a^{2} + \frac{4}{11} a + \frac{5}{11}$, $\frac{1}{11} a^{17} + \frac{3}{11} a^{12} + \frac{1}{11} a^{11} + \frac{1}{11} a^{10} + \frac{3}{11} a^{8} - \frac{5}{11} a^{7} + \frac{1}{11} a^{6} + \frac{2}{11} a^{5} + \frac{3}{11} a^{4} - \frac{5}{11} a^{3} - \frac{4}{11} a^{2} - \frac{4}{11} a + \frac{2}{11}$, $\frac{1}{11} a^{18} + \frac{2}{11} a^{12} - \frac{5}{11} a^{11} - \frac{2}{11} a^{10} + \frac{4}{11} a^{9} + \frac{3}{11} a^{8} - \frac{4}{11} a^{7} - \frac{2}{11} a^{6} - \frac{5}{11} a^{5} + \frac{3}{11} a^{4} + \frac{1}{11} a^{3} + \frac{3}{11} a^{2} + \frac{3}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{19} + \frac{3}{11} a^{12} + \frac{5}{11} a^{11} - \frac{1}{11} a^{10} + \frac{5}{11} a^{8} + \frac{2}{11} a^{7} - \frac{4}{11} a^{6} + \frac{5}{11} a^{5} - \frac{1}{11} a^{4} - \frac{1}{11} a^{3} + \frac{4}{11} a^{2} - \frac{2}{11} a - \frac{3}{11}$, $\frac{1}{34381523} a^{20} - \frac{347684}{34381523} a^{19} + \frac{1159211}{34381523} a^{18} - \frac{958305}{34381523} a^{17} + \frac{310778}{34381523} a^{16} - \frac{166623}{34381523} a^{15} - \frac{1048216}{34381523} a^{14} - \frac{1434150}{34381523} a^{13} - \frac{16464672}{34381523} a^{12} - \frac{3479431}{34381523} a^{11} - \frac{873983}{3125593} a^{10} + \frac{9321230}{34381523} a^{9} + \frac{9725278}{34381523} a^{8} - \frac{3216749}{34381523} a^{7} + \frac{2912924}{34381523} a^{6} - \frac{13472599}{34381523} a^{5} - \frac{5411929}{34381523} a^{4} + \frac{1433411}{34381523} a^{3} - \frac{1650613}{34381523} a^{2} + \frac{1423927}{34381523} a - \frac{4860760}{34381523}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2549812.08882 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_7$ (as 21T33):
| A non-solvable group of order 2520 |
| The 9 conjugacy class representatives for $A_7$ |
| Character table for $A_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 7 sibling: | 7.3.12313081.1 |
| Degree 15 siblings: | Deg 15, Deg 15 |
| Degree 35 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.12.10.3 | $x^{12} + 220 x^{6} + 41503$ | $6$ | $2$ | $10$ | $C_3 : C_4$ | $[\ ]_{6}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.12.8.1 | $x^{12} - 87 x^{9} + 2523 x^{6} - 24389 x^{3} + 4851240379$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |