Normalized defining polynomial
\( x^{21} - 2 x^{20} - 31 x^{19} + 14 x^{18} + 391 x^{17} + 839 x^{16} - 3642 x^{15} - 12906 x^{14} + 21946 x^{13} + 71319 x^{12} - 68080 x^{11} - 360180 x^{10} + 640978 x^{9} + 2101569 x^{8} - 6970238 x^{7} - 4352809 x^{6} + 28605427 x^{5} + 1130039 x^{4} - 63367644 x^{3} - 20310040 x^{2} + 139664899 x - 45933317 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14720060085349067194568080398784262958628864=2^{14}\cdot 37^{2}\cdot 71^{4}\cdot 211^{2}\cdot 8623^{4}\cdot 10243^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $113.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 71, 211, 8623, 10243$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{20} - \frac{557947523478432761614115364565375611446857249957612191806215938781658325575997}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{19} + \frac{276217619959680318150101513008752279186200395288885290781941934472320582330411}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{18} - \frac{1733814951375817322268097703661530443056752028338974697875480976926273811294180}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{17} - \frac{1174437562479458652246578107643286175032062306009637493579275016841507253197450}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{16} - \frac{2357971268737355251154508545238125640502335015107672335718683663986522062986881}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{15} - \frac{2874630510785025990896873473479564093776208932385577866849346251042813704999786}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{14} - \frac{2785416518278717311618598940459385112976330537252621768289359528123888390161254}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{13} - \frac{41196818798631641039713055668396005950176240999243720907855005380113666718083}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{12} + \frac{1395189310339205611330652700314580665816554563230458463140255889450392202476443}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{11} - \frac{2190944369275414823697355872808820365957715555879467721580990698665643286780169}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{10} - \frac{1426621335534212811956946216629483165662535931089477257737003878625540830661699}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{9} - \frac{3234601401611925915333259520288073460087316442698355648797042021983780927591190}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{8} - \frac{1935540279487367093845267685210853006301001078675437231141915601406069604063484}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{7} - \frac{3281004191446458719846012264618048067030580118987031838611978332499300422636197}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{6} + \frac{527954896061581689728744333924521556786208367443074667138826582113876103876302}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{5} + \frac{383486596650290897498159952534686241734108341706185101937300968357654212186871}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{4} - \frac{2156031162462654108863711402472292165257625741791033672340497817728659539542951}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{3} - \frac{655911268719087242519138727288804750050708627599966586512090065682684512087103}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a^{2} + \frac{2954930050742391972025348266419962985445189670752927030060251996133984891135326}{6769105357270557317072318415090366338727725282843577957583445482408567152173233} a + \frac{582783089850662569793328697095623118781849565003866440220115528771937622491358}{6769105357270557317072318415090366338727725282843577957583445482408567152173233}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6213329276080 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 225 conjugacy class representatives for t21n150 are not computed |
| Character table for t21n150 is not computed |
Intermediate fields
| 7.3.612233.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.23 | $x^{14} + x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T6 | $[2, 2, 2]^{7}$ | |
| $37$ | 37.3.2.2 | $x^{3} + 74$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.6.0.1 | $x^{6} - x + 20$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 37.12.0.1 | $x^{12} - x + 15$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 71 | Data not computed | ||||||
| 211 | Data not computed | ||||||
| 8623 | Data not computed | ||||||
| 10243 | Data not computed | ||||||