Normalized defining polynomial
\( x^{21} - 27 x^{19} - 10 x^{18} + 216 x^{17} + 210 x^{16} + 725 x^{15} + 288 x^{14} - 19932 x^{13} - 38346 x^{12} + 76410 x^{11} + 234948 x^{10} + 296881 x^{9} + 400932 x^{8} - 2455545 x^{7} - 3096076 x^{6} + 984564 x^{5} + 2353416 x^{4} - 412432 x^{3} + 313056 x^{2} + 208704 x - 139136 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(101797990310360609370645863694989201915904=2^{14}\cdot 3^{28}\cdot 593^{3}\cdot 1033^{3}\cdot 1087^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 593, 1033, 1087$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} + \frac{1}{4} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{17} + \frac{1}{8} a^{15} - \frac{1}{4} a^{14} - \frac{1}{2} a^{13} + \frac{1}{4} a^{12} - \frac{3}{8} a^{11} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{18} + \frac{1}{16} a^{16} - \frac{1}{8} a^{15} + \frac{1}{4} a^{14} + \frac{1}{8} a^{13} + \frac{5}{16} a^{12} - \frac{1}{2} a^{11} - \frac{1}{8} a^{9} - \frac{3}{8} a^{8} - \frac{1}{4} a^{7} - \frac{7}{16} a^{6} + \frac{1}{4} a^{5} + \frac{3}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{19} + \frac{1}{32} a^{17} - \frac{1}{16} a^{16} + \frac{1}{8} a^{15} + \frac{1}{16} a^{14} + \frac{5}{32} a^{13} - \frac{1}{4} a^{12} - \frac{1}{16} a^{10} + \frac{5}{16} a^{9} + \frac{3}{8} a^{8} - \frac{7}{32} a^{7} + \frac{1}{8} a^{6} + \frac{3}{32} a^{5} + \frac{3}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{104944254282055342806912158043370246293942120787844733453553480769984} a^{20} - \frac{377289124524568532693983924458216643725916188632837120637368032633}{26236063570513835701728039510842561573485530196961183363388370192496} a^{19} - \frac{1335123889464405075356073598918199067533698065773311950133220192107}{104944254282055342806912158043370246293942120787844733453553480769984} a^{18} - \frac{3170318139855782750763275252969075963757281257542138499593155311299}{52472127141027671403456079021685123146971060393922366726776740384992} a^{17} + \frac{150434988898506622923097096885499213999706314207810957481744036123}{6559015892628458925432009877710640393371382549240295840847092548124} a^{16} - \frac{3684289999358805162213298294225459102993468350773396448515363375851}{52472127141027671403456079021685123146971060393922366726776740384992} a^{15} - \frac{15207709552014516855353938253984213214284185975767026808618355002915}{104944254282055342806912158043370246293942120787844733453553480769984} a^{14} - \frac{4300687794393975694639369064174667838131362620031001240943168240301}{26236063570513835701728039510842561573485530196961183363388370192496} a^{13} + \frac{2258359166640676938898766020491033513661541739545631026068575307345}{26236063570513835701728039510842561573485530196961183363388370192496} a^{12} - \frac{9313120053839533134015431422006477916800956451053601919474968413665}{52472127141027671403456079021685123146971060393922366726776740384992} a^{11} - \frac{17179318686443758985953866887017658541804366726086984578334302922223}{52472127141027671403456079021685123146971060393922366726776740384992} a^{10} + \frac{3677060622498605039327865477844098085731774054566681206564841991927}{26236063570513835701728039510842561573485530196961183363388370192496} a^{9} + \frac{13604910608317517626849939529268989170564890599875456153371700365201}{104944254282055342806912158043370246293942120787844733453553480769984} a^{8} - \frac{1664082834089383443580172621280407417129618798508232379711602895273}{6559015892628458925432009877710640393371382549240295840847092548124} a^{7} + \frac{6595342680539194590588200191649822443125036824458410883645427031431}{104944254282055342806912158043370246293942120787844733453553480769984} a^{6} + \frac{2098904863527213697227671778508899578943687005930302975571696223459}{6559015892628458925432009877710640393371382549240295840847092548124} a^{5} - \frac{3123607105147348858482470734620153423372407452654970730588809993547}{26236063570513835701728039510842561573485530196961183363388370192496} a^{4} + \frac{802386133447162728465685412937503089380863437044837351743958427541}{1639753973157114731358002469427660098342845637310073960211773137031} a^{3} + \frac{2423978502168259775440793452802790786720614935267455177306931373731}{6559015892628458925432009877710640393371382549240295840847092548124} a^{2} + \frac{695937479961248762609830047351457355481121580573370142220667290008}{1639753973157114731358002469427660098342845637310073960211773137031} a + \frac{461717911494110299264847920930705189242710222396375905538358766281}{1639753973157114731358002469427660098342845637310073960211773137031}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1820587529600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 261 conjugacy class representatives for t21n149 are not computed |
| Character table for t21n149 is not computed |
Intermediate fields
| 7.3.612569.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | $15{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | $21$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $21$ | $15{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | $18{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.34 | $x^{14} - x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{7} + 2 x^{4} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| $3$ | 3.9.12.18 | $x^{9} + 6 x^{8} + 18 x^{3} + 27$ | $3$ | $3$ | $12$ | $(C_3^2:C_3):C_2$ | $[2, 2, 2]^{6}$ |
| 3.12.16.7 | $x^{12} + 48 x^{11} + 81 x^{10} - 93 x^{9} + 90 x^{8} - 27 x^{7} + 108 x^{6} - 54 x^{5} - 81 x^{4} - 81$ | $3$ | $4$ | $16$ | 12T173 | $[2, 2, 2, 2]^{8}$ | |
| 593 | Data not computed | ||||||
| 1033 | Data not computed | ||||||
| 1087 | Data not computed | ||||||