Normalized defining polynomial
\( x^{21} - 103983 x^{14} + 508304187 x^{7} + 10460353203 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-996726852728145413540441359277571789889580380640583=-\,3^{18}\cdot 7^{29}\cdot 19^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $268.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{12} a^{7} + \frac{1}{4}$, $\frac{1}{12} a^{8} + \frac{1}{4} a$, $\frac{1}{12} a^{9} + \frac{1}{4} a^{2}$, $\frac{1}{12} a^{10} + \frac{1}{4} a^{3}$, $\frac{1}{252} a^{11} - \frac{1}{28} a^{10} - \frac{1}{28} a^{9} + \frac{1}{84} a^{8} - \frac{1}{84} a^{7} + \frac{1}{84} a^{4} - \frac{3}{28} a^{3} - \frac{3}{28} a^{2} + \frac{1}{28} a - \frac{1}{28}$, $\frac{1}{252} a^{12} - \frac{1}{42} a^{10} + \frac{1}{42} a^{9} + \frac{1}{84} a^{8} - \frac{1}{42} a^{7} + \frac{1}{84} a^{5} - \frac{1}{14} a^{3} + \frac{1}{14} a^{2} + \frac{1}{28} a - \frac{1}{14}$, $\frac{1}{252} a^{13} - \frac{1}{42} a^{10} - \frac{1}{28} a^{9} - \frac{1}{28} a^{8} + \frac{1}{84} a^{7} + \frac{1}{84} a^{6} - \frac{1}{14} a^{3} - \frac{3}{28} a^{2} - \frac{3}{28} a + \frac{1}{28}$, $\frac{1}{30084387984} a^{14} - \frac{154238125}{5014064664} a^{7} + \frac{113445463}{1114236592}$, $\frac{1}{270759491856} a^{15} - \frac{572076847}{45126581976} a^{8} + \frac{949122907}{10028129328} a$, $\frac{1}{7310506280112} a^{16} + \frac{48315053627}{1218417713352} a^{9} - \frac{66740750057}{270759491856} a^{2}$, $\frac{1}{65794556521008} a^{17} - \frac{53219755819}{10965759420168} a^{10} + \frac{948607344403}{2436835426704} a^{3}$, $\frac{1}{1776453026067216} a^{18} - \frac{575398775827}{296075504344536} a^{11} - \frac{1}{84} a^{10} - \frac{1}{84} a^{9} - \frac{1}{42} a^{8} + \frac{1}{42} a^{7} + \frac{27405677691475}{65794556521008} a^{4} - \frac{1}{28} a^{3} - \frac{1}{28} a^{2} - \frac{1}{14} a + \frac{1}{14}$, $\frac{1}{15988077234604944} a^{19} + \frac{1774406814209}{2664679539100824} a^{12} + \frac{226355884314523}{592151008689072} a^{5}$, $\frac{1}{431678085334333488} a^{20} - \frac{8799718340953}{71946347555722248} a^{13} - \frac{1}{42} a^{10} - \frac{1}{28} a^{9} - \frac{1}{28} a^{8} + \frac{1}{84} a^{7} - \frac{3925750593279089}{15988077234604944} a^{6} - \frac{1}{14} a^{3} - \frac{3}{28} a^{2} - \frac{3}{28} a + \frac{1}{28}$
Class group and class number
$C_{21}$, which has order $21$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48743028014176990 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.17689.1, Deg 7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | $21$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 7 | Data not computed | ||||||
| 19 | Data not computed | ||||||