Normalized defining polynomial
\( x^{21} - 7 x^{20} - 21 x^{19} + 231 x^{18} + 77 x^{17} - 3255 x^{16} + 1701 x^{15} + 25169 x^{14} - 22890 x^{13} - 120750 x^{12} + 153188 x^{11} + 167748 x^{10} - 63896 x^{9} - 667016 x^{8} + 650208 x^{7} - 1194704 x^{6} + 2329152 x^{5} + 2944032 x^{4} - 4262720 x^{3} - 9240448 x^{2} + 9202368 x + 7854656 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-990506497724182757810432716022494243247764430389248=-\,2^{33}\cdot 3^{18}\cdot 7^{21}\cdot 127^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $268.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{5}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{5}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{1}{4} a^{5}$, $\frac{1}{8} a^{15} - \frac{1}{4} a^{9} - \frac{1}{8} a^{7} + \frac{1}{4} a^{5}$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{9} - \frac{1}{8} a^{8} + \frac{1}{4} a^{5}$, $\frac{1}{16} a^{17} - \frac{1}{16} a^{16} - \frac{1}{16} a^{15} - \frac{1}{16} a^{14} + \frac{1}{16} a^{13} + \frac{1}{16} a^{12} + \frac{1}{16} a^{11} + \frac{1}{16} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{18} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{16} a^{10} + \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{32} a^{19} - \frac{1}{32} a^{18} - \frac{1}{32} a^{17} - \frac{1}{32} a^{16} + \frac{1}{32} a^{15} + \frac{1}{32} a^{14} + \frac{1}{32} a^{13} - \frac{3}{32} a^{12} + \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{152446932960735502413179944509090904820569485055053496721122528} a^{20} + \frac{497562774360877321010152631865742852702300658218644654068821}{76223466480367751206589972254545452410284742527526748360561264} a^{19} - \frac{33362842094273673492694282263439279217635943074368455969457}{5863343575412903938968459404195804031560364809809749873889328} a^{18} - \frac{137548186142334203352820680003499333271751734524222244860897}{76223466480367751206589972254545452410284742527526748360561264} a^{17} + \frac{1763987319888346686474673685688775978271027685715928018903651}{38111733240183875603294986127272726205142371263763374180280632} a^{16} + \frac{4301964556899931790213072148091209463165054210273095958811595}{76223466480367751206589972254545452410284742527526748360561264} a^{15} - \frac{2474538247075730699163480571313314642926726498898627798966297}{76223466480367751206589972254545452410284742527526748360561264} a^{14} - \frac{8138840664054301898183248803062988122648371773831391813576479}{76223466480367751206589972254545452410284742527526748360561264} a^{13} - \frac{1604640537596861875546790619918560021092276130963233161311389}{152446932960735502413179944509090904820569485055053496721122528} a^{12} - \frac{22858181148084250738599393090022367780812155063855911916165}{2931671787706451969484229702097902015780182404904874936944664} a^{11} - \frac{4098021444492846380103259272769803567816097497265628144419343}{38111733240183875603294986127272726205142371263763374180280632} a^{10} - \frac{87035540533182034489458608033421140417972651614270993474987}{732917946926612992371057425524475503945045601226218734236166} a^{9} - \frac{3779507391946224125318375838703077658703466361452771567771579}{19055866620091937801647493063636363102571185631881687090140316} a^{8} + \frac{7404081489144138430323888790839269683210748025149621831562403}{38111733240183875603294986127272726205142371263763374180280632} a^{7} - \frac{1682429806994242318888326876737485786977782238329172558730547}{19055866620091937801647493063636363102571185631881687090140316} a^{6} + \frac{3623493028452152996884464227279415073421361689286717958153927}{9527933310045968900823746531818181551285592815940843545070158} a^{5} + \frac{149059397270948050661268921144367379857060546837206483006431}{9527933310045968900823746531818181551285592815940843545070158} a^{4} + \frac{1431618445715359214590606641148603616838994234216809151238641}{4763966655022984450411873265909090775642796407970421772535079} a^{3} - \frac{1482436079778118432683436099012734266608109154179601928403180}{4763966655022984450411873265909090775642796407970421772535079} a^{2} + \frac{1737469642249034047003737976946340561276584655115832109424161}{4763966655022984450411873265909090775642796407970421772535079} a - \frac{1461612439609638726772715013334018850187713784640356610957357}{4763966655022984450411873265909090775642796407970421772535079}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 650945378943354200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_7$ (as 21T15):
| A solvable group of order 252 |
| The 21 conjugacy class representatives for $S_3\times F_7$ |
| Character table for $S_3\times F_7$ is not computed |
Intermediate fields
| 3.3.1016.1, 7.1.38423222208.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.27.121 | $x^{14} - 4 x^{13} - 4 x^{12} + 8 x^{11} + 8 x^{10} - 6 x^{8} + 8 x^{7} + 6 x^{6} - 4 x^{5} - 2 x^{4} - 4 x^{3} + 4 x^{2} + 8 x + 6$ | $14$ | $1$ | $27$ | $(C_7:C_3) \times C_2$ | $[3]_{7}^{3}$ | |
| $3$ | 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 3.14.12.1 | $x^{14} - 3 x^{7} + 18$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 7 | Data not computed | ||||||
| $127$ | $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.1 | $x^{2} - 127$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |