Normalized defining polynomial
\( x^{21} - 6 x^{20} - 11 x^{19} + 145 x^{18} - 158 x^{17} - 1042 x^{16} + 2544 x^{15} + 1413 x^{14} - 8325 x^{13} + 2625 x^{12} + 2312 x^{11} + 20511 x^{10} - 29387 x^{9} + 5610 x^{8} - 11776 x^{7} + 33120 x^{6} - 19936 x^{5} + 5440 x^{4} - 9728 x^{3} + 9984 x^{2} - 3840 x + 512 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-982496117138192800045136433685620047=-\,23^{7}\cdot 4339^{2}\cdot 3914969159^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 4339, 3914969159$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{14} + \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{3}{16} a^{7} + \frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{8} a^{4} + \frac{3}{16} a^{3} - \frac{1}{16} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{128} a^{15} - \frac{1}{64} a^{14} + \frac{1}{128} a^{13} + \frac{13}{128} a^{12} - \frac{3}{64} a^{11} - \frac{3}{64} a^{10} - \frac{1}{8} a^{9} + \frac{29}{128} a^{8} + \frac{15}{128} a^{7} + \frac{1}{128} a^{6} - \frac{1}{16} a^{5} + \frac{35}{128} a^{4} + \frac{17}{128} a^{3} + \frac{13}{64} a^{2} - \frac{1}{32} a - \frac{3}{16}$, $\frac{1}{512} a^{16} - \frac{3}{512} a^{14} - \frac{49}{512} a^{13} + \frac{5}{128} a^{12} - \frac{25}{256} a^{11} - \frac{15}{128} a^{10} + \frac{61}{512} a^{9} - \frac{55}{512} a^{8} + \frac{63}{512} a^{7} + \frac{45}{256} a^{6} - \frac{77}{512} a^{5} - \frac{73}{512} a^{4} - \frac{41}{128} a^{3} - \frac{11}{32} a^{2} - \frac{5}{16} a - \frac{11}{32}$, $\frac{1}{2048} a^{17} - \frac{1}{1024} a^{16} - \frac{3}{2048} a^{15} - \frac{43}{2048} a^{14} + \frac{59}{1024} a^{13} - \frac{109}{1024} a^{12} - \frac{11}{256} a^{11} - \frac{203}{2048} a^{10} - \frac{177}{2048} a^{9} - \frac{211}{2048} a^{8} + \frac{87}{512} a^{7} + \frac{255}{2048} a^{6} - \frac{47}{2048} a^{5} + \frac{503}{1024} a^{4} - \frac{125}{256} a^{3} + \frac{1}{32} a^{2} - \frac{23}{128} a + \frac{27}{64}$, $\frac{1}{16384} a^{18} - \frac{7}{16384} a^{16} + \frac{15}{16384} a^{15} - \frac{3}{512} a^{14} - \frac{471}{8192} a^{13} - \frac{179}{4096} a^{12} + \frac{1797}{16384} a^{11} + \frac{569}{16384} a^{10} - \frac{1589}{16384} a^{9} - \frac{1669}{8192} a^{8} + \frac{1399}{16384} a^{7} + \frac{3087}{16384} a^{6} - \frac{7}{1024} a^{5} + \frac{941}{4096} a^{4} - \frac{469}{1024} a^{3} - \frac{455}{1024} a^{2} + \frac{47}{128} a + \frac{35}{256}$, $\frac{1}{3473408} a^{19} + \frac{33}{1736704} a^{18} - \frac{679}{3473408} a^{17} - \frac{2815}{3473408} a^{16} + \frac{1967}{1736704} a^{15} + \frac{7161}{1736704} a^{14} - \frac{42525}{434176} a^{13} - \frac{5735}{65536} a^{12} - \frac{35453}{3473408} a^{11} - \frac{57507}{3473408} a^{10} + \frac{20827}{868352} a^{9} - \frac{113597}{3473408} a^{8} + \frac{695741}{3473408} a^{7} + \frac{199815}{1736704} a^{6} - \frac{119187}{868352} a^{5} - \frac{15525}{434176} a^{4} - \frac{29121}{217088} a^{3} - \frac{30123}{108544} a^{2} + \frac{21879}{54272} a + \frac{4475}{27136}$, $\frac{1}{13893632} a^{20} + \frac{1}{262144} a^{18} + \frac{1295}{13893632} a^{17} - \frac{2177}{3473408} a^{16} - \frac{23445}{6946816} a^{15} - \frac{39827}{3473408} a^{14} - \frac{1530307}{13893632} a^{13} - \frac{468887}{13893632} a^{12} - \frac{568585}{13893632} a^{11} - \frac{351063}{6946816} a^{10} - \frac{549365}{13893632} a^{9} + \frac{1941687}{13893632} a^{8} - \frac{489379}{3473408} a^{7} - \frac{119513}{1736704} a^{6} + \frac{70327}{868352} a^{5} + \frac{58791}{217088} a^{4} - \frac{9021}{217088} a^{3} - \frac{35811}{108544} a^{2} + \frac{6329}{27136} a + \frac{8781}{54272}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7832311206.02 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 28449792 |
| The 98 conjugacy class representatives for t21n146 are not computed |
| Character table for t21n146 is not computed |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{7}$ | $21$ | ${\href{/LocalNumberField/5.7.0.1}{7} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ | $21$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.14.7.2 | $x^{14} - 148035889 x^{2} + 27238603576$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 4339 | Data not computed | ||||||
| 3914969159 | Data not computed | ||||||