Normalized defining polynomial
\( x^{21} - x^{20} - 10 x^{19} + 8 x^{18} + 32 x^{17} - 59 x^{16} + 7 x^{15} + 422 x^{14} + 190 x^{13} - 795 x^{12} - 1054 x^{11} + 695 x^{10} + 3497 x^{9} - 381 x^{8} - 4108 x^{7} + 1137 x^{6} + 364 x^{5} - 117 x^{4} + x^{3} + 12 x^{2} - 3 x - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9785353109399805100134419972096=-\,2^{14}\cdot 37^{7}\cdot 184607^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 184607$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{103} a^{19} + \frac{12}{103} a^{18} - \frac{25}{103} a^{17} - \frac{19}{103} a^{15} + \frac{3}{103} a^{14} - \frac{1}{103} a^{13} - \frac{1}{103} a^{12} + \frac{39}{103} a^{11} - \frac{14}{103} a^{10} + \frac{26}{103} a^{9} + \frac{28}{103} a^{8} + \frac{33}{103} a^{7} - \frac{2}{103} a^{6} + \frac{8}{103} a^{5} + \frac{38}{103} a^{4} + \frac{5}{103} a^{3} + \frac{42}{103} a^{2} + \frac{1}{103} a - \frac{50}{103}$, $\frac{1}{55565734489931678695263856134493} a^{20} + \frac{69268017573202420069333923610}{55565734489931678695263856134493} a^{19} + \frac{139812405409388656305681407188}{539473150387686200924891807131} a^{18} + \frac{2956037863790804161954650295021}{55565734489931678695263856134493} a^{17} - \frac{7994737885265737441822112027479}{55565734489931678695263856134493} a^{16} + \frac{9719858082388700945858183719085}{55565734489931678695263856134493} a^{15} - \frac{20155810950324826928818973861342}{55565734489931678695263856134493} a^{14} + \frac{19748036245419293221582415484695}{55565734489931678695263856134493} a^{13} + \frac{10885247275556303884406712178140}{55565734489931678695263856134493} a^{12} - \frac{6028626593082389748583224025006}{55565734489931678695263856134493} a^{11} - \frac{14663126100513115776406584941913}{55565734489931678695263856134493} a^{10} - \frac{2337723554893510018139104820069}{55565734489931678695263856134493} a^{9} - \frac{24796490025151516549591943195673}{55565734489931678695263856134493} a^{8} - \frac{12319860639157983661140309880981}{55565734489931678695263856134493} a^{7} + \frac{2062433924699358477626614324471}{55565734489931678695263856134493} a^{6} - \frac{2734941511326981201869032894796}{55565734489931678695263856134493} a^{5} - \frac{12562456018167149376344978683852}{55565734489931678695263856134493} a^{4} - \frac{17260684267830866128977829676828}{55565734489931678695263856134493} a^{3} + \frac{26048786715439780485030085301912}{55565734489931678695263856134493} a^{2} - \frac{12151197502770581514391344508977}{55565734489931678695263856134493} a + \frac{16885119405905083741679475780}{55565734489931678695263856134493}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11488244.7921 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30240 |
| The 45 conjugacy class representatives for t21n74 |
| Character table for t21n74 is not computed |
Intermediate fields
| 3.3.148.1, 7.1.184607.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | $21$ | $15{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | $15{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 184607 | Data not computed | ||||||