Normalized defining polynomial
\( x^{21} - 5 x^{20} + 14 x^{19} - 30 x^{18} + 81 x^{17} - 198 x^{16} + 312 x^{15} - 259 x^{14} - 31 x^{13} + 395 x^{12} - 455 x^{11} + 311 x^{10} + 131 x^{9} - 101 x^{8} + 292 x^{7} + 104 x^{6} + 29 x^{5} + 133 x^{4} + 67 x^{3} + 11 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-953896806899772096335364351819=-\,3^{4}\cdot 11^{9}\cdot 13^{12}\cdot 463^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 13, 463$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{4} a^{17} + \frac{1}{4} a^{16} + \frac{1}{4} a^{15} - \frac{1}{4} a^{14} + \frac{1}{4} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{18} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{16} a^{19} - \frac{1}{8} a^{18} + \frac{1}{16} a^{17} + \frac{3}{16} a^{16} + \frac{3}{16} a^{15} - \frac{1}{8} a^{14} - \frac{3}{16} a^{13} + \frac{1}{8} a^{12} - \frac{1}{4} a^{11} + \frac{1}{16} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} + \frac{3}{16} a^{7} - \frac{1}{4} a^{6} + \frac{3}{16} a^{5} - \frac{3}{16} a^{4} - \frac{1}{16} a^{3} + \frac{7}{16} a^{2} - \frac{1}{16} a + \frac{7}{16}$, $\frac{1}{8904187964691130925648} a^{20} - \frac{4154475953366055324}{556511747793195682853} a^{19} - \frac{68416276443121781867}{8904187964691130925648} a^{18} + \frac{862347542381476677301}{8904187964691130925648} a^{17} - \frac{1479247795829183625687}{8904187964691130925648} a^{16} + \frac{690940078700009762033}{2226046991172782731412} a^{15} - \frac{2692817801200955070311}{8904187964691130925648} a^{14} + \frac{259200947715325341385}{2226046991172782731412} a^{13} + \frac{28078350606985012090}{556511747793195682853} a^{12} - \frac{3926677066876259812871}{8904187964691130925648} a^{11} + \frac{470614082692443825781}{4452093982345565462824} a^{10} + \frac{114049934864182346953}{556511747793195682853} a^{9} + \frac{2534404911890748273795}{8904187964691130925648} a^{8} + \frac{1759208642698521405437}{4452093982345565462824} a^{7} + \frac{1701999221617874172075}{8904187964691130925648} a^{6} + \frac{2529522150779436725843}{8904187964691130925648} a^{5} + \frac{2113977521147304409873}{8904187964691130925648} a^{4} + \frac{4308594732383025347853}{8904187964691130925648} a^{3} + \frac{1369905489120491143677}{8904187964691130925648} a^{2} - \frac{2110844734852378639459}{8904187964691130925648} a - \frac{1215969847653875186109}{4452093982345565462824}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6859502.52387 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 91854 |
| The 168 conjugacy class representatives for t21n98 are not computed |
| Character table for t21n98 is not computed |
Intermediate fields
| 7.1.38014691.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | R | $21$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | $18{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | $21$ | $21$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.9.0.1 | $x^{9} - x^{3} + x^{2} + 1$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 11 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 463 | Data not computed | ||||||