Normalized defining polynomial
\( x^{21} - 1570 x^{14} + 20744 x^{7} + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-91953634653088335584878879192739848388608=-\,2^{18}\cdot 7^{15}\cdot 43^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{372616} a^{14} - \frac{7787}{186308} a^{7} + \frac{17335}{46577}$, $\frac{1}{372616} a^{15} - \frac{7787}{186308} a^{8} + \frac{17335}{46577} a$, $\frac{1}{745232} a^{16} + \frac{85367}{372616} a^{9} + \frac{17335}{93154} a^{2}$, $\frac{1}{745232} a^{17} + \frac{85367}{372616} a^{10} + \frac{17335}{93154} a^{3}$, $\frac{1}{10433248} a^{18} + \frac{1}{5216624} a^{17} - \frac{3}{5216624} a^{16} + \frac{1}{1304156} a^{15} - \frac{3}{2608312} a^{14} + \frac{1}{28} a^{13} + \frac{3}{28} a^{12} - \frac{100941}{5216624} a^{11} - \frac{67651}{372616} a^{10} + \frac{302823}{2608312} a^{9} - \frac{10537}{46577} a^{8} - \frac{162947}{1304156} a^{7} - \frac{1}{14} a^{6} - \frac{1}{2} a^{5} + \frac{203643}{1304156} a^{4} + \frac{296797}{652078} a^{3} + \frac{227457}{652078} a^{2} + \frac{127824}{326039} a + \frac{87726}{326039}$, $\frac{1}{10433248} a^{19} + \frac{1}{2608312} a^{17} + \frac{3}{5216624} a^{16} - \frac{3}{2608312} a^{14} + \frac{1}{28} a^{13} + \frac{85367}{5216624} a^{12} + \frac{3}{28} a^{11} + \frac{271675}{1304156} a^{10} - \frac{489131}{2608312} a^{9} - \frac{3}{14} a^{8} - \frac{69793}{1304156} a^{7} - \frac{5}{14} a^{6} - \frac{448435}{1304156} a^{5} - \frac{5}{14} a^{4} - \frac{122396}{326039} a^{3} - \frac{320611}{652078} a^{2} - \frac{1}{7} a + \frac{41149}{326039}$, $\frac{1}{20866496} a^{20} + \frac{3}{5216624} a^{17} - \frac{1}{5216624} a^{16} - \frac{1}{1304156} a^{15} - \frac{1}{1304156} a^{14} - \frac{659865}{10433248} a^{13} - \frac{1}{28} a^{12} - \frac{3}{28} a^{11} - \frac{302823}{2608312} a^{10} + \frac{67651}{372616} a^{9} + \frac{100941}{652078} a^{8} + \frac{10537}{46577} a^{7} - \frac{75819}{2608312} a^{6} + \frac{1}{14} a^{5} - \frac{1}{2} a^{4} - \frac{41149}{652078} a^{3} - \frac{296797}{652078} a^{2} + \frac{151638}{326039} a - \frac{127824}{326039}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9475124586466.07 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.1849.1, 7.1.3677426458048.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 7 | Data not computed | ||||||
| $43$ | 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |