Normalized defining polynomial
\( x^{21} - 2 x^{18} - 18 x^{17} + 12 x^{16} + 93 x^{15} + 252 x^{14} + 756 x^{13} + 424 x^{12} - 846 x^{11} - 3942 x^{10} - 12420 x^{9} - 20592 x^{8} - 30729 x^{7} - 35272 x^{6} - 30168 x^{5} - 18600 x^{4} - 8512 x^{3} - 2880 x^{2} - 768 x - 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-86433900540276528721822666309632=-\,2^{14}\cdot 3^{21}\cdot 11\cdot 71^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} + \frac{1}{4} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{3}{8} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{18} - \frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{4} a^{13} - \frac{3}{16} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{8} a^{8} - \frac{3}{8} a^{7} - \frac{1}{4} a^{6} + \frac{7}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{19} - \frac{1}{16} a^{16} - \frac{1}{16} a^{15} + \frac{3}{8} a^{14} - \frac{3}{32} a^{13} - \frac{1}{8} a^{12} - \frac{3}{8} a^{11} + \frac{1}{4} a^{10} + \frac{1}{16} a^{9} - \frac{3}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{9}{32} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{7908919982766242558762926559586901696} a^{20} + \frac{25240087045243041044569191411649043}{1977229995691560639690731639896725424} a^{19} - \frac{20503659675956223147379194880673567}{988614997845780319845365819948362712} a^{18} + \frac{171982141141592812293714975472949619}{3954459991383121279381463279793450848} a^{17} + \frac{11415897594949267471693616132263067}{3954459991383121279381463279793450848} a^{16} + \frac{480429637856555485385450557045108329}{1977229995691560639690731639896725424} a^{15} - \frac{17069451816165368321737329692087559}{43695690512520677120237163312634816} a^{14} + \frac{223098694967542802405649133153823901}{988614997845780319845365819948362712} a^{13} - \frac{109050601394847951529467290343645117}{1977229995691560639690731639896725424} a^{12} + \frac{4162880645162035981164100605577996}{123576874730722539980670727493545339} a^{11} - \frac{1127762660338070536096176507760419}{304189230106393944567804867676419296} a^{10} + \frac{88177995784625479854799917192365417}{3954459991383121279381463279793450848} a^{9} - \frac{974166237007026367597950315391230527}{1977229995691560639690731639896725424} a^{8} - \frac{50709897970725673715172660148453423}{123576874730722539980670727493545339} a^{7} - \frac{3256164692590851590709167874744017497}{7908919982766242558762926559586901696} a^{6} + \frac{695270831767291304227458949363734043}{1977229995691560639690731639896725424} a^{5} + \frac{3841700521295731035188955879319461}{9505913440824810767743902114888103} a^{4} + \frac{108764556666467417088114035615232289}{494307498922890159922682909974181356} a^{3} - \frac{56827866917518762831931995819232799}{123576874730722539980670727493545339} a^{2} + \frac{10551966269612290954269453694421434}{123576874730722539980670727493545339} a + \frac{3625990694745481629437810895795709}{123576874730722539980670727493545339}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48578716.598 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3919104 |
| The 288 conjugacy class representatives for t21n131 are not computed |
| Character table for t21n131 is not computed |
Intermediate fields
| 7.1.357911.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | $21$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.20 | $x^{14} + 4 x^{13} - x^{12} - 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 4 x^{4} - 2 x^{3} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.6.3.2 | $x^{6} - 5041 x^{2} + 715822$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |