Normalized defining polynomial
\( x^{21} - 9 x^{20} + 39 x^{19} - 110 x^{18} + 212 x^{17} - 254 x^{16} + 72 x^{15} + 444 x^{14} - 1230 x^{13} + 2243 x^{12} - 3572 x^{11} + 5129 x^{10} - 6067 x^{9} + 5990 x^{8} - 5448 x^{7} + 5112 x^{6} - 4212 x^{5} + 3001 x^{4} - 1825 x^{3} + 903 x^{2} - 185 x + 211 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-822552053520401820057771484375=-\,5^{9}\cdot 11^{7}\cdot 43^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{425} a^{19} - \frac{4}{85} a^{18} + \frac{4}{85} a^{17} + \frac{6}{85} a^{16} + \frac{32}{425} a^{15} - \frac{41}{425} a^{14} + \frac{3}{85} a^{13} - \frac{37}{425} a^{12} + \frac{97}{425} a^{11} + \frac{159}{425} a^{10} - \frac{114}{425} a^{9} + \frac{87}{425} a^{8} - \frac{178}{425} a^{7} + \frac{3}{17} a^{6} - \frac{111}{425} a^{5} - \frac{202}{425} a^{4} - \frac{26}{425} a^{3} - \frac{23}{85} a^{2} - \frac{126}{425} a + \frac{24}{425}$, $\frac{1}{4640345384605574372118625} a^{20} + \frac{2528619623901381403243}{4640345384605574372118625} a^{19} + \frac{2202664042817640774410}{37122763076844594976949} a^{18} + \frac{58932463378998047270093}{928069076921114874423725} a^{17} + \frac{128900419088232983603017}{4640345384605574372118625} a^{16} + \frac{60211905892358196194746}{928069076921114874423725} a^{15} + \frac{221850231024042169837007}{4640345384605574372118625} a^{14} + \frac{373235336968325587362658}{4640345384605574372118625} a^{13} - \frac{14851078457487188572439}{4640345384605574372118625} a^{12} - \frac{158354061032679730145772}{928069076921114874423725} a^{11} - \frac{1783031192177400331104367}{4640345384605574372118625} a^{10} + \frac{388297401799808124809139}{928069076921114874423725} a^{9} + \frac{1580813328271850947314048}{4640345384605574372118625} a^{8} + \frac{204920996562053539803261}{4640345384605574372118625} a^{7} - \frac{852785440919100574126051}{4640345384605574372118625} a^{6} - \frac{402308084759162315992483}{928069076921114874423725} a^{5} - \frac{1699899462969184400498542}{4640345384605574372118625} a^{4} - \frac{1515136341669582906206983}{4640345384605574372118625} a^{3} - \frac{2305563769494805788683891}{4640345384605574372118625} a^{2} + \frac{755112549033558620407921}{4640345384605574372118625} a + \frac{8098895557200653805746}{272961493212092610124625}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7898710.55939 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times D_7$ (as 21T8):
| A solvable group of order 84 |
| The 15 conjugacy class representatives for $S_3\times D_7$ |
| Character table for $S_3\times D_7$ |
Intermediate fields
| 3.3.473.1, 7.1.9938375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | R | $21$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.7.0.1 | $x^{7} - x + 4$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 11.14.7.2 | $x^{14} - 1771561 x^{2} + 77948684$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |