Normalized defining polynomial
\( x^{21} - 7 x^{20} + 21 x^{19} - 34 x^{18} + 1025 x^{17} - 3326 x^{16} - 4791 x^{15} + 35690 x^{14} + 172662 x^{13} - 722735 x^{12} - 2200457 x^{11} + 12122450 x^{10} + 5074902 x^{9} - 104698907 x^{8} + 38398895 x^{7} + 668343838 x^{6} - 226790361 x^{5} - 5051469101 x^{4} + 8934318451 x^{3} - 1381928003 x^{2} - 3420907499 x - 581915363 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8129659254492969220523049692132298709650136981663=-\,7^{17}\cdot 83^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $213.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{29} a^{17} + \frac{9}{29} a^{16} - \frac{11}{29} a^{15} + \frac{2}{29} a^{14} - \frac{10}{29} a^{12} - \frac{12}{29} a^{11} - \frac{12}{29} a^{10} - \frac{7}{29} a^{9} - \frac{7}{29} a^{8} - \frac{10}{29} a^{7} - \frac{3}{29} a^{5} - \frac{3}{29} a^{3} - \frac{6}{29} a^{2} + \frac{11}{29} a$, $\frac{1}{2407} a^{18} - \frac{14}{2407} a^{17} + \frac{739}{2407} a^{16} - \frac{383}{2407} a^{15} - \frac{655}{2407} a^{14} + \frac{715}{2407} a^{13} + \frac{711}{2407} a^{12} - \frac{142}{2407} a^{11} - \frac{833}{2407} a^{10} - \frac{687}{2407} a^{9} + \frac{64}{2407} a^{8} + \frac{607}{2407} a^{7} + \frac{432}{2407} a^{6} - \frac{424}{2407} a^{5} + \frac{432}{2407} a^{4} - \frac{198}{2407} a^{3} - \frac{547}{2407} a^{2} - \frac{1123}{2407} a - \frac{2}{83}$, $\frac{1}{2407} a^{19} - \frac{38}{2407} a^{17} - \frac{80}{2407} a^{16} + \frac{374}{2407} a^{15} + \frac{11}{2407} a^{14} + \frac{1093}{2407} a^{13} + \frac{1180}{2407} a^{12} - \frac{663}{2407} a^{11} - \frac{563}{2407} a^{10} - \frac{673}{2407} a^{9} + \frac{756}{2407} a^{8} + \frac{298}{2407} a^{7} + \frac{810}{2407} a^{6} + \frac{1053}{2407} a^{5} + \frac{1036}{2407} a^{4} + \frac{831}{2407} a^{3} - \frac{481}{2407} a^{2} - \frac{508}{2407} a - \frac{28}{83}$, $\frac{1}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{20} - \frac{388798106084207171250055046274979403498860534912876209486510600858356432199006188902689613}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{19} - \frac{122566829183927638517268494309503870470396410194924195356063044513039048991546329253791220}{804784831008336437538918575853698083247136403813467907612737778660603644954271382837069158313} a^{18} + \frac{88797591181321747855061627605272487141138195545708915516277129664896694296142704005820417015}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{17} - \frac{47025838979518755954486813537055548511138896618940844507703100982284753671588837040005939691}{126050636182028598650673993808410543159190039151507021674284230392624667281994312974480711543} a^{16} - \frac{11506615373950666697098346875858921894863309701005494386669435049544107389442267651965136290}{804784831008336437538918575853698083247136403813467907612737778660603644954271382837069158313} a^{15} - \frac{3693384688747026164434882089479934047788928626737672821996006499708214000525944522939297820808}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{14} - \frac{5217192676148077605120501477303324484801353187776942117820003795755824207050190431772671138575}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{13} - \frac{3169476392806435315257865964468582824774103064976633889641188100615515538752194337332212579723}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{12} - \frac{1579808239565317059930245030688438160341855242481476031632008486245477893931039913064877837977}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{11} - \frac{1077932519072672374017212565727207737709721342811259712390178322703267336136370122957873768909}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{10} - \frac{909843446058025279762996734744005165456751979053740375411556320895851148982775046377704133028}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{9} - \frac{2681898083872369168625726953993524677531198991464885412583282844318056102161466406955731303656}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{8} + \frac{4757367061538064710524423009786271859992800913481906219226377742465676971313900917797156215802}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{7} - \frac{4317382908973296346461925238321625505271776251862105748004663416696197908524993644023390105712}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{6} - \frac{3133907651232597098366006202062949001739773974537993502811833505353552999431877078992077264177}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{5} + \frac{3442579928270682648368052915649012921704340553102440996061730363309061797610972887031468692130}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{4} - \frac{5132634973060588091646416113485391179319268947392853419043512393907066133382880747502743000099}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{3} + \frac{1270868533020085858079010678513432820596043280455061344274330429617562392730170243927897126335}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a^{2} - \frac{4799064337210042109752581976854977266959277031284574151557241054128100283548303090547198010640}{10462202803108373688005941486098075082212773249575082798965591122587847384405527976881899058069} a + \frac{19136544088628873173481160354939867094909228110741114788368426314367527674666428419315553690}{360765613900288747862273844348209485593543905157761475826399693882339564979500964720065484761}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31367470867428572 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times D_7$ (as 21T3):
| A solvable group of order 42 |
| The 15 conjugacy class representatives for $C_3\times D_7$ |
| Character table for $C_3\times D_7$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.1.112140548065567.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | $21$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{21}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $83$ | 83.7.6.1 | $x^{7} - 83$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ |
| 83.7.6.1 | $x^{7} - 83$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ | |
| 83.7.6.1 | $x^{7} - 83$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ |