Normalized defining polynomial
\( x^{21} - 6 x^{20} + 19 x^{19} - 35 x^{18} + 34 x^{17} - 27 x^{16} + 33 x^{15} - 73 x^{14} + 37 x^{13} + 44 x^{12} + 137 x^{11} - 33 x^{10} + 60 x^{9} + 177 x^{8} + 243 x^{7} - 219 x^{6} - 876 x^{5} - 1332 x^{4} - 1192 x^{3} - 736 x^{2} - 288 x - 64 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7655337671796811085236857471811=-\,7^{14}\cdot 29^{3}\cdot 77351^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29, 77351$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{12} + \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{3}{8} a^{7} - \frac{1}{4} a^{6} + \frac{3}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} + \frac{1}{16} a^{11} - \frac{3}{16} a^{9} + \frac{3}{16} a^{8} - \frac{1}{16} a^{7} - \frac{7}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} + \frac{1}{16} a^{11} + \frac{1}{16} a^{10} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{7}{16} a^{6} + \frac{7}{16} a^{5} - \frac{3}{16} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{16} - \frac{1}{32} a^{14} + \frac{1}{32} a^{13} + \frac{1}{32} a^{12} - \frac{3}{32} a^{11} + \frac{1}{16} a^{9} - \frac{1}{4} a^{8} + \frac{5}{32} a^{7} + \frac{11}{32} a^{6} - \frac{9}{32} a^{5} - \frac{3}{8} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{17} - \frac{1}{32} a^{15} - \frac{1}{32} a^{14} - \frac{1}{32} a^{13} + \frac{1}{32} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{5}{32} a^{8} + \frac{1}{32} a^{7} - \frac{7}{32} a^{6} + \frac{1}{4} a^{5} + \frac{3}{16} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{832} a^{18} + \frac{3}{832} a^{17} + \frac{5}{832} a^{16} - \frac{9}{416} a^{15} - \frac{11}{416} a^{14} + \frac{1}{32} a^{13} + \frac{5}{832} a^{12} + \frac{23}{208} a^{11} + \frac{31}{416} a^{10} + \frac{61}{832} a^{9} + \frac{75}{416} a^{8} - \frac{15}{32} a^{7} + \frac{303}{832} a^{6} - \frac{3}{416} a^{5} + \frac{21}{104} a^{4} - \frac{51}{104} a^{3} + \frac{1}{26} a^{2} - \frac{2}{13} a - \frac{3}{13}$, $\frac{1}{3328} a^{19} + \frac{11}{1664} a^{17} - \frac{7}{3328} a^{16} + \frac{29}{1664} a^{15} + \frac{23}{832} a^{14} - \frac{177}{3328} a^{13} + \frac{181}{3328} a^{12} - \frac{15}{208} a^{11} - \frac{333}{3328} a^{10} + \frac{643}{3328} a^{9} + \frac{165}{1664} a^{8} + \frac{1161}{3328} a^{7} - \frac{499}{3328} a^{6} - \frac{181}{832} a^{5} + \frac{19}{832} a^{4} + \frac{79}{416} a^{3} + \frac{45}{104} a^{2} - \frac{33}{104} a - \frac{17}{52}$, $\frac{1}{13312} a^{20} - \frac{1}{13312} a^{19} - \frac{1}{6656} a^{18} - \frac{205}{13312} a^{17} - \frac{159}{13312} a^{16} + \frac{77}{6656} a^{15} + \frac{259}{13312} a^{14} - \frac{29}{6656} a^{13} - \frac{749}{13312} a^{12} - \frac{121}{1024} a^{11} - \frac{71}{832} a^{10} + \frac{2175}{13312} a^{9} + \frac{67}{1024} a^{8} + \frac{469}{3328} a^{7} + \frac{3527}{13312} a^{6} - \frac{493}{1664} a^{5} + \frac{275}{3328} a^{4} - \frac{391}{1664} a^{3} - \frac{25}{208} a^{2} - \frac{9}{416} a - \frac{67}{208}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14306648.6019 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8232 |
| The 55 conjugacy class representatives for t21n45 are not computed |
| Character table for t21n45 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | $21$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.7.0.1 | $x^{7} - x + 3$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 29.7.0.1 | $x^{7} - x + 3$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 77351 | Data not computed | ||||||