Normalized defining polynomial
\( x^{21} - 7 x^{20} - 10 x^{19} + 149 x^{18} + 8 x^{17} - 1375 x^{16} + 513 x^{15} + 1633 x^{14} + 27157 x^{13} - 52788 x^{12} - 327079 x^{11} + 1254566 x^{10} + 736266 x^{9} - 9563747 x^{8} + 12752578 x^{7} + 5924631 x^{6} - 8676262 x^{5} - 34239268 x^{4} + 23180423 x^{3} + 11077409 x^{2} + 29642690 x - 10983749 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-72011138722425633565208857577376396922983=-\,3^{18}\cdot 7^{17}\cdot 19^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{2}{9} a^{8} + \frac{1}{3} a^{7} - \frac{1}{9} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{9} a^{2} + \frac{2}{9}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{13} + \frac{1}{3} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{9} a^{16} - \frac{1}{9} a^{12} + \frac{4}{9} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{9}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{13} + \frac{1}{9} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{9} a^{7} + \frac{1}{3} a^{6} + \frac{4}{9} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{189} a^{18} - \frac{1}{189} a^{17} - \frac{1}{27} a^{16} - \frac{2}{63} a^{15} - \frac{8}{189} a^{14} + \frac{1}{27} a^{13} - \frac{2}{63} a^{12} - \frac{1}{27} a^{11} - \frac{1}{189} a^{10} - \frac{10}{21} a^{9} - \frac{11}{27} a^{8} - \frac{50}{189} a^{7} + \frac{19}{63} a^{6} + \frac{11}{27} a^{5} - \frac{10}{27} a^{4} - \frac{1}{9} a^{3} + \frac{10}{27} a^{2} - \frac{2}{27} a - \frac{10}{27}$, $\frac{1}{189} a^{19} - \frac{8}{189} a^{17} + \frac{8}{189} a^{16} + \frac{1}{27} a^{15} - \frac{1}{189} a^{14} - \frac{20}{189} a^{13} + \frac{29}{189} a^{12} - \frac{8}{189} a^{11} - \frac{1}{27} a^{10} + \frac{43}{189} a^{9} - \frac{64}{189} a^{8} + \frac{7}{27} a^{7} - \frac{76}{189} a^{6} - \frac{8}{27} a^{5} - \frac{10}{27} a^{4} + \frac{10}{27} a^{3} + \frac{8}{27} a^{2} - \frac{2}{9} a + \frac{5}{27}$, $\frac{1}{285115271312775302688431031516495668439755630444097277223054106041736544971} a^{20} + \frac{701781261275273628517945014625489938364146027124109415972498192600766052}{285115271312775302688431031516495668439755630444097277223054106041736544971} a^{19} - \frac{428199515995979347607976927423398463545918063410856059613180724629561341}{285115271312775302688431031516495668439755630444097277223054106041736544971} a^{18} - \frac{71717971569490786338604246107077735044263641679207757664255513120048763}{1508546409062303188827677415431194012908759949439668133455312730379558439} a^{17} + \frac{3002517411515084566767314605465861025874272612526074636004042120818300230}{285115271312775302688431031516495668439755630444097277223054106041736544971} a^{16} - \frac{9444595121815558569214080942989164705137439686583883292918275073408813353}{285115271312775302688431031516495668439755630444097277223054106041736544971} a^{15} - \frac{62059215948829694792507975633424097919186581940776281075621111135977666}{1508546409062303188827677415431194012908759949439668133455312730379558439} a^{14} + \frac{27094830126966476698845615459462977497472225101131419107286757814051008347}{285115271312775302688431031516495668439755630444097277223054106041736544971} a^{13} + \frac{6475734660740292207984580050897968086738533532058435424960361661953669016}{40730753044682186098347290216642238348536518634871039603293443720248077853} a^{12} + \frac{5563588686346260810686642897367419497290310898905205465004857596273918535}{95038423770925100896143677172165222813251876814699092407684702013912181657} a^{11} + \frac{22213742003869202933606464243069682149901271798978464165855145252809851354}{285115271312775302688431031516495668439755630444097277223054106041736544971} a^{10} + \frac{4249986636871266739548266956676951666604398552518044705036704743308443194}{40730753044682186098347290216642238348536518634871039603293443720248077853} a^{9} - \frac{5596861223974940955485520960947345690215107657291835701486510720329818508}{31679474590308366965381225724055074271083958938233030802561567337970727219} a^{8} - \frac{2377352080108251349618289415045885204159318726657956429521098193193847781}{285115271312775302688431031516495668439755630444097277223054106041736544971} a^{7} - \frac{38026324681538180709735410063594887289319395944136039325547064469722463703}{285115271312775302688431031516495668439755630444097277223054106041736544971} a^{6} - \frac{3490547994343042097847954609420605872595603733955350974346396433667171171}{13576917681560728699449096738880746116178839544957013201097814573416025951} a^{5} + \frac{18297830045243406843866096279200027719153762846121943084348546505511016110}{40730753044682186098347290216642238348536518634871039603293443720248077853} a^{4} + \frac{318851002588580172678822102599164340714353099454174628491817234323259988}{40730753044682186098347290216642238348536518634871039603293443720248077853} a^{3} - \frac{7425028392051553645389813138236170774324052140032077676060099756904413796}{40730753044682186098347290216642238348536518634871039603293443720248077853} a^{2} - \frac{4727405112452063353200562813241399335276985404350494646049257871761830936}{13576917681560728699449096738880746116178839544957013201097814573416025951} a + \frac{1821325369268335683306127736940006049958797367677652141877173732357898266}{4525639227186909566483032246293582038726279848319004400365938191138675317}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1924259099008.9683 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.17689.1, 7.1.1596732379263.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19 | Data not computed | ||||||