Normalized defining polynomial
\( x^{21} - 435 x^{14} + 38375 x^{7} - 78125 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-71307894054048265215993997676849365234375=-\,5^{18}\cdot 7^{15}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{10} a^{7} - \frac{1}{2}$, $\frac{1}{10} a^{8} - \frac{1}{2} a$, $\frac{1}{10} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{50} a^{11} + \frac{3}{10} a^{4}$, $\frac{1}{50} a^{12} + \frac{3}{10} a^{5}$, $\frac{1}{50} a^{13} + \frac{3}{10} a^{6}$, $\frac{1}{54500} a^{14} + \frac{39}{5450} a^{7} - \frac{171}{436}$, $\frac{1}{54500} a^{15} + \frac{39}{5450} a^{8} - \frac{171}{436} a$, $\frac{1}{272500} a^{16} - \frac{253}{13625} a^{9} + \frac{47}{2180} a^{2}$, $\frac{1}{272500} a^{17} - \frac{253}{13625} a^{10} + \frac{47}{2180} a^{3}$, $\frac{1}{9537500} a^{18} + \frac{3}{1907500} a^{17} + \frac{1}{381500} a^{15} - \frac{3}{381500} a^{14} + \frac{1}{175} a^{13} - \frac{1}{175} a^{12} + \frac{2472}{476875} a^{11} - \frac{759}{95375} a^{10} - \frac{1}{70} a^{9} + \frac{39}{38150} a^{8} - \frac{1207}{38150} a^{7} + \frac{8}{35} a^{6} + \frac{1}{5} a^{5} - \frac{13033}{76300} a^{4} - \frac{6399}{15260} a^{3} - \frac{5}{14} a^{2} + \frac{701}{3052} a - \frac{359}{3052}$, $\frac{1}{9537500} a^{19} - \frac{3}{1907500} a^{17} - \frac{1}{953750} a^{16} + \frac{3}{381500} a^{15} - \frac{1}{381500} a^{14} + \frac{3}{350} a^{13} - \frac{8681}{953750} a^{12} - \frac{1}{175} a^{11} - \frac{1207}{190750} a^{10} + \frac{3231}{95375} a^{9} - \frac{139}{5450} a^{8} + \frac{1051}{38150} a^{7} + \frac{19}{70} a^{6} + \frac{25117}{76300} a^{5} + \frac{12}{35} a^{4} + \frac{949}{15260} a^{3} - \frac{3317}{7630} a^{2} + \frac{795}{3052} a + \frac{1479}{3052}$, $\frac{1}{47687500} a^{20} + \frac{3}{1907500} a^{17} + \frac{3}{1907500} a^{16} + \frac{1}{381500} a^{14} - \frac{3231}{4768750} a^{13} + \frac{1}{175} a^{12} - \frac{1}{175} a^{11} - \frac{4243}{190750} a^{10} - \frac{759}{95375} a^{9} - \frac{1}{70} a^{8} + \frac{39}{38150} a^{7} + \frac{118857}{381500} a^{6} + \frac{8}{35} a^{5} + \frac{1}{5} a^{4} - \frac{949}{15260} a^{3} - \frac{6399}{15260} a^{2} - \frac{5}{14} a + \frac{701}{3052}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3971562537930.904 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.169.1, 7.1.7500386359375.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | R | $21$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.7.6.1 | $x^{7} - 5$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 5.7.6.1 | $x^{7} - 5$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 5.7.6.1 | $x^{7} - 5$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |