Normalized defining polynomial
\( x^{21} - 560857 x^{14} + 65329261371 x^{7} - 93206534790699 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-70488525434400042968409628831807900651401450217386256557463=-\,7^{29}\cdot 11^{18}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $634.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{88} a^{7} - \frac{1}{8}$, $\frac{1}{264} a^{8} + \frac{7}{24} a$, $\frac{1}{792} a^{9} + \frac{7}{72} a^{2}$, $\frac{1}{2376} a^{10} - \frac{65}{216} a^{3}$, $\frac{1}{548856} a^{11} + \frac{1}{8316} a^{10} - \frac{1}{5544} a^{9} + \frac{1}{1848} a^{8} - \frac{3}{616} a^{7} - \frac{24257}{49896} a^{4} - \frac{65}{756} a^{3} + \frac{65}{504} a^{2} - \frac{65}{168} a + \frac{27}{56}$, $\frac{1}{1646568} a^{12} - \frac{1}{5544} a^{10} + \frac{1}{2772} a^{9} + \frac{1}{616} a^{8} + \frac{3}{616} a^{7} - \frac{24257}{149688} a^{5} + \frac{65}{504} a^{3} - \frac{65}{252} a^{2} - \frac{9}{56} a - \frac{27}{56}$, $\frac{1}{4939704} a^{13} - \frac{1}{8316} a^{10} - \frac{1}{2772} a^{9} + \frac{1}{1848} a^{8} - \frac{1}{616} a^{7} + \frac{125431}{449064} a^{6} + \frac{65}{756} a^{3} + \frac{65}{252} a^{2} - \frac{65}{168} a + \frac{9}{56}$, $\frac{1}{1863532972224} a^{14} + \frac{378355031}{84706044192} a^{7} + \frac{155993}{640192}$, $\frac{1}{5590598916672} a^{15} + \frac{378355031}{254118132576} a^{8} + \frac{155993}{1920576} a$, $\frac{1}{184489764250176} a^{16} - \frac{2509351021}{8385898375008} a^{9} - \frac{3445087}{63379008} a^{2}$, $\frac{1}{553469292750528} a^{17} - \frac{2509351021}{25157695125024} a^{10} - \frac{66824095}{190137024} a^{3}$, $\frac{1}{18264486660767424} a^{18} + \frac{515864843}{830203939125792} a^{11} - \frac{1}{5544} a^{10} - \frac{1}{2772} a^{9} + \frac{1}{924} a^{8} + \frac{1}{616} a^{7} - \frac{2554953167}{6274521792} a^{4} + \frac{65}{504} a^{3} + \frac{65}{252} a^{2} + \frac{19}{84} a - \frac{9}{56}$, $\frac{1}{54793459982302272} a^{19} + \frac{515864843}{2490611817377376} a^{12} + \frac{1}{16632} a^{10} - \frac{1}{1848} a^{9} - \frac{1}{1848} a^{8} - \frac{1}{616} a^{7} + \frac{3719568625}{18823565376} a^{5} - \frac{65}{1512} a^{3} + \frac{65}{168} a^{2} + \frac{65}{168} a + \frac{9}{56}$, $\frac{1}{1808184179415974976} a^{20} + \frac{3541080707}{82190189973453408} a^{13} - \frac{1}{8316} a^{10} - \frac{1}{2772} a^{9} + \frac{1}{1848} a^{8} - \frac{1}{616} a^{7} - \frac{29545675463}{69019739712} a^{6} + \frac{65}{756} a^{3} + \frac{65}{252} a^{2} - \frac{65}{168} a + \frac{9}{56}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 864787995831793200000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.8281.2, Deg 7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $11$ | 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |