Normalized defining polynomial
\( x^{21} - 14 x^{18} - 35 x^{17} - 378 x^{16} - 2156 x^{15} - 11388 x^{14} - 32389 x^{13} - 37828 x^{12} + 118272 x^{11} + 748202 x^{10} + 2315831 x^{9} + 5004286 x^{8} + 8412668 x^{7} + 9020704 x^{6} - 8885072 x^{5} - 78595552 x^{4} - 215347216 x^{3} - 373582496 x^{2} - 431349184 x - 276796288 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-67686406102186645929831429725293868327921434624=-\,2^{14}\cdot 7^{21}\cdot 37^{7}\cdot 2971^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $169.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 37, 2971$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} + \frac{1}{8} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} + \frac{1}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{16} a^{7} - \frac{3}{16} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{32} a^{9} + \frac{1}{32} a^{8} + \frac{1}{32} a^{7} + \frac{1}{32} a^{6} + \frac{5}{32} a^{5} + \frac{1}{16} a^{4} + \frac{1}{8} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{13} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{7}{32} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{32} a^{14} - \frac{1}{16} a^{8} - \frac{1}{32} a^{6} - \frac{1}{4} a^{5} + \frac{1}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{64} a^{15} - \frac{1}{32} a^{11} - \frac{1}{16} a^{9} + \frac{1}{64} a^{7} - \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{128} a^{16} - \frac{1}{64} a^{14} - \frac{1}{64} a^{13} - \frac{1}{64} a^{11} + \frac{1}{64} a^{10} + \frac{1}{64} a^{9} + \frac{7}{128} a^{8} + \frac{5}{64} a^{7} - \frac{3}{16} a^{5} - \frac{3}{16} a^{4} - \frac{1}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{256} a^{17} - \frac{1}{256} a^{16} - \frac{1}{128} a^{13} + \frac{1}{128} a^{12} + \frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{7}{256} a^{9} + \frac{7}{256} a^{8} + \frac{1}{64} a^{7} - \frac{1}{64} a^{6} - \frac{3}{16} a^{5} - \frac{1}{16} a^{4} + \frac{3}{16} a^{3} - \frac{3}{16} a^{2} + \frac{1}{4}$, $\frac{1}{512} a^{18} - \frac{1}{512} a^{17} - \frac{1}{256} a^{16} - \frac{1}{128} a^{15} - \frac{3}{256} a^{14} - \frac{1}{256} a^{13} - \frac{1}{128} a^{12} + \frac{13}{512} a^{10} + \frac{27}{512} a^{9} + \frac{7}{256} a^{8} + \frac{11}{128} a^{7} - \frac{1}{16} a^{6} + \frac{5}{32} a^{5} + \frac{7}{32} a^{4} - \frac{9}{32} a^{3} - \frac{1}{16} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{2048} a^{19} - \frac{1}{1024} a^{18} - \frac{1}{2048} a^{17} + \frac{3}{1024} a^{16} - \frac{5}{1024} a^{15} - \frac{3}{512} a^{14} + \frac{15}{1024} a^{13} - \frac{3}{512} a^{12} - \frac{3}{2048} a^{11} - \frac{9}{1024} a^{10} - \frac{13}{2048} a^{9} + \frac{3}{1024} a^{8} - \frac{13}{512} a^{7} + \frac{7}{64} a^{6} - \frac{7}{32} a^{5} + \frac{15}{64} a^{4} - \frac{45}{128} a^{3} + \frac{27}{64} a^{2} + \frac{9}{32} a - \frac{7}{16}$, $\frac{1}{19965719550242055047389034623730148235711492419807895552} a^{20} - \frac{4055596935471434239660562085634382837054802058613315}{19965719550242055047389034623730148235711492419807895552} a^{19} + \frac{10279187336020604930874220736588794184575010281717961}{19965719550242055047389034623730148235711492419807895552} a^{18} - \frac{14251072247354576656714339739021559473080971848324841}{19965719550242055047389034623730148235711492419807895552} a^{17} - \frac{4926649851665894704624191046107211665635108123734685}{2495714943780256880923629327966268529463936552475986944} a^{16} - \frac{50658266717811790029099276734064064757665125306168193}{9982859775121027523694517311865074117855746209903947776} a^{15} + \frac{90733539352523874445895398993987875621328607252028365}{9982859775121027523694517311865074117855746209903947776} a^{14} - \frac{6586522175467029195918941385958132078325090646323109}{9982859775121027523694517311865074117855746209903947776} a^{13} - \frac{71654936625387725836503293175169224543440335387759783}{19965719550242055047389034623730148235711492419807895552} a^{12} - \frac{215942929076199659403990842994835831965125536479908495}{19965719550242055047389034623730148235711492419807895552} a^{11} - \frac{353153991339001252246470480887973842669805437626335827}{19965719550242055047389034623730148235711492419807895552} a^{10} - \frac{1081976721286286618860234650899843043487387049909199069}{19965719550242055047389034623730148235711492419807895552} a^{9} - \frac{537938246483824160054283406246592212774090687414957657}{9982859775121027523694517311865074117855746209903947776} a^{8} + \frac{238581227202904241673523286170753852215858838145817045}{4991429887560513761847258655932537058927873104951973888} a^{7} + \frac{7606566618258127239924562612287163358998531680711623}{77991091993133027528863416498945891545748017264874592} a^{6} + \frac{18065127959541500304300073319658394764465805338570745}{623928735945064220230907331991567132365984138118996736} a^{5} + \frac{104504423906723260501694711076450111308834018316739173}{1247857471890128440461814663983134264731968276237993472} a^{4} - \frac{517232232303000455597364161236888309979230759578616173}{1247857471890128440461814663983134264731968276237993472} a^{3} - \frac{257067295768716603178891059756759578533221739420706845}{623928735945064220230907331991567132365984138118996736} a^{2} - \frac{88294980645720480896702513615813792714598804613216895}{311964367972532110115453665995783566182992069059498368} a - \frac{54856320004165994647580852695185017220958009746586733}{155982183986266055057726832997891783091496034529749184}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 137300855804000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 111132 |
| The 70 conjugacy class representatives for t21n102 are not computed |
| Character table for t21n102 is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | $18{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 7 | Data not computed | ||||||
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.14.7.1 | $x^{14} - 405224 x^{8} + 41051622544 x^{2} - 2373296928325$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 2971 | Data not computed | ||||||