Normalized defining polynomial
\( x^{21} - 830 x^{14} - 181248 x^{7} + 2097152 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-674424743915820495717627003682966750085368250368=-\,2^{18}\cdot 7^{29}\cdot 19^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $189.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a$, $\frac{1}{8} a^{9} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{10} + \frac{1}{8} a^{3}$, $\frac{1}{448} a^{11} + \frac{1}{112} a^{10} - \frac{1}{56} a^{9} + \frac{1}{14} a^{8} + \frac{1}{7} a^{7} - \frac{31}{224} a^{4} + \frac{25}{56} a^{3} + \frac{3}{28} a^{2} - \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{896} a^{12} - \frac{3}{112} a^{10} - \frac{3}{56} a^{9} - \frac{1}{14} a^{8} + \frac{3}{14} a^{7} - \frac{31}{448} a^{5} - \frac{19}{56} a^{3} + \frac{9}{28} a^{2} + \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{1792} a^{13} + \frac{3}{112} a^{10} - \frac{1}{56} a^{9} + \frac{1}{28} a^{8} - \frac{1}{7} a^{7} - \frac{31}{896} a^{6} + \frac{19}{56} a^{3} + \frac{3}{28} a^{2} - \frac{3}{14} a - \frac{1}{7}$, $\frac{1}{896000} a^{14} + \frac{92513}{448000} a^{7} + \frac{417}{875}$, $\frac{1}{1792000} a^{15} + \frac{92513}{896000} a^{8} - \frac{229}{875} a$, $\frac{1}{7168000} a^{16} - \frac{131487}{3584000} a^{9} + \frac{2167}{7000} a^{2}$, $\frac{1}{14336000} a^{17} - \frac{131487}{7168000} a^{10} - \frac{4833}{14000} a^{3}$, $\frac{1}{57344000} a^{18} - \frac{3487}{28672000} a^{11} + \frac{1}{56} a^{10} - \frac{1}{28} a^{9} - \frac{3}{28} a^{8} - \frac{3}{14} a^{7} - \frac{6333}{56000} a^{4} - \frac{3}{28} a^{3} + \frac{3}{14} a^{2} - \frac{5}{14} a + \frac{2}{7}$, $\frac{1}{114688000} a^{19} - \frac{3487}{57344000} a^{12} + \frac{1}{112} a^{10} + \frac{1}{56} a^{9} + \frac{3}{28} a^{8} - \frac{1}{14} a^{7} - \frac{6333}{112000} a^{5} + \frac{25}{56} a^{3} - \frac{3}{28} a^{2} + \frac{5}{14} a + \frac{3}{7}$, $\frac{1}{458752000} a^{20} - \frac{3487}{229376000} a^{13} + \frac{3}{112} a^{10} - \frac{1}{56} a^{9} + \frac{1}{28} a^{8} - \frac{1}{7} a^{7} + \frac{105667}{448000} a^{6} + \frac{19}{56} a^{3} + \frac{3}{28} a^{2} - \frac{3}{14} a - \frac{1}{7}$
Class group and class number
$C_{21}$, which has order $21$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1867922722744152.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.17689.2, Deg 7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ | R | $21$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 7 | Data not computed | ||||||
| 19 | Data not computed | ||||||