Normalized defining polynomial
\( x^{21} - 6 x^{20} + 22 x^{19} - 44 x^{18} + 46 x^{17} - 18 x^{16} - 9 x^{15} - 94 x^{14} + 67 x^{13} + 50 x^{12} + 44 x^{11} - 96 x^{10} + 288 x^{9} + 690 x^{8} + 639 x^{7} - 246 x^{6} - 1218 x^{5} - 1692 x^{4} - 1384 x^{3} - 784 x^{2} - 288 x - 64 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-647754154086026198212292912701505536=-\,2^{23}\cdot 79^{7}\cdot 159017^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 79, 159017$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{3}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{3}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{3}{16} a^{8} + \frac{3}{16} a^{7} - \frac{5}{16} a^{6} - \frac{3}{16} a^{5} + \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{15} + \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{3}{16} a^{9} + \frac{1}{8} a^{6} + \frac{3}{16} a^{5} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{16} + \frac{1}{32} a^{12} + \frac{1}{16} a^{11} + \frac{1}{32} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{7}{16} a^{7} + \frac{11}{32} a^{6} + \frac{1}{8} a^{5} - \frac{3}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{17} + \frac{1}{32} a^{13} - \frac{1}{16} a^{12} + \frac{1}{32} a^{11} - \frac{1}{8} a^{10} - \frac{3}{16} a^{8} - \frac{13}{32} a^{7} - \frac{1}{4} a^{6} + \frac{1}{16} a^{5} + \frac{3}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{1984} a^{18} + \frac{1}{1984} a^{17} - \frac{15}{992} a^{16} - \frac{3}{124} a^{15} + \frac{9}{1984} a^{14} + \frac{11}{1984} a^{13} + \frac{85}{1984} a^{12} + \frac{5}{1984} a^{11} + \frac{117}{992} a^{10} - \frac{131}{992} a^{9} + \frac{485}{1984} a^{8} - \frac{949}{1984} a^{7} - \frac{91}{496} a^{6} + \frac{189}{992} a^{5} - \frac{137}{496} a^{4} + \frac{9}{62} a^{3} - \frac{1}{2} a^{2} - \frac{7}{62} a + \frac{11}{31}$, $\frac{1}{7936} a^{19} - \frac{1}{256} a^{17} + \frac{53}{3968} a^{16} + \frac{181}{7936} a^{15} - \frac{123}{3968} a^{14} - \frac{211}{3968} a^{13} - \frac{113}{1984} a^{12} - \frac{887}{7936} a^{11} - \frac{7}{64} a^{10} - \frac{617}{7936} a^{9} - \frac{841}{3968} a^{8} - \frac{2639}{7936} a^{7} + \frac{1921}{3968} a^{6} - \frac{525}{3968} a^{5} + \frac{581}{1984} a^{4} + \frac{119}{992} a^{3} - \frac{45}{496} a^{2} - \frac{33}{248} a + \frac{51}{124}$, $\frac{1}{31744} a^{20} - \frac{1}{31744} a^{19} + \frac{1}{31744} a^{18} - \frac{327}{31744} a^{17} - \frac{389}{31744} a^{16} + \frac{21}{31744} a^{15} - \frac{55}{1984} a^{14} + \frac{409}{15872} a^{13} + \frac{797}{31744} a^{12} - \frac{317}{31744} a^{11} - \frac{1685}{31744} a^{10} + \frac{471}{31744} a^{9} + \frac{4643}{31744} a^{8} - \frac{11487}{31744} a^{7} - \frac{539}{7936} a^{6} - \frac{5161}{15872} a^{5} + \frac{3953}{7936} a^{4} - \frac{1785}{3968} a^{3} - \frac{269}{1984} a^{2} - \frac{89}{992} a - \frac{195}{496}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 182519624586 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16464 |
| The 65 conjugacy class representatives for t21n62 are not computed |
| Character table for t21n62 is not computed |
Intermediate fields
| 3.3.316.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | $21$ | $21$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $79$ | 79.7.0.1 | $x^{7} - x + 9$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 79.14.7.1 | $x^{14} - 986078 x^{8} + 243087455521 x^{2} - 1555516627878879$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 159017 | Data not computed | ||||||