Normalized defining polynomial
\( x^{21} - 42 x^{18} - 7 x^{17} - 238 x^{16} + 1596 x^{15} + 264 x^{14} - 2597 x^{13} + 7252 x^{12} - 48160 x^{11} + 41062 x^{10} - 500493 x^{9} + 3501162 x^{8} - 10842556 x^{7} + 25912572 x^{6} - 46236008 x^{5} + 52502576 x^{4} - 57998080 x^{3} + 81998336 x^{2} - 60924864 x + 14292672 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-61436912371186183111624977032670332439065837568=-\,2^{14}\cdot 3^{15}\cdot 7^{21}\cdot 31^{4}\cdot 47^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $169.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 31, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{7} + \frac{1}{8} a^{5}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{8} a^{9} - \frac{1}{16} a^{8} + \frac{1}{16} a^{6} - \frac{1}{8} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{11} + \frac{1}{16} a^{9} + \frac{1}{16} a^{7} + \frac{1}{8} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{16} a^{14} - \frac{1}{8} a^{9} - \frac{1}{16} a^{6} + \frac{1}{8} a^{5}$, $\frac{1}{16} a^{15} - \frac{1}{8} a^{9} - \frac{1}{16} a^{7} + \frac{1}{8} a^{5}$, $\frac{1}{32} a^{16} - \frac{1}{16} a^{10} - \frac{1}{32} a^{8} + \frac{1}{16} a^{6}$, $\frac{1}{32} a^{17} - \frac{1}{16} a^{11} - \frac{1}{32} a^{9} + \frac{1}{16} a^{7}$, $\frac{1}{64} a^{18} - \frac{1}{64} a^{17} - \frac{1}{32} a^{14} - \frac{1}{32} a^{13} - \frac{3}{64} a^{10} - \frac{5}{64} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{128} a^{19} + \frac{1}{128} a^{17} - \frac{1}{64} a^{16} + \frac{1}{64} a^{15} - \frac{1}{64} a^{13} - \frac{7}{128} a^{11} + \frac{1}{32} a^{10} + \frac{9}{128} a^{9} - \frac{7}{64} a^{8} - \frac{3}{32} a^{7} - \frac{1}{32} a^{6} - \frac{3}{16} a^{5} + \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2951869271589324159815706925641896398592202217997709791488} a^{20} + \frac{10075980355591610283127415204304623088215541528612541071}{2951869271589324159815706925641896398592202217997709791488} a^{19} + \frac{20455887042209026614693355286003084756350174780253707833}{2951869271589324159815706925641896398592202217997709791488} a^{18} - \frac{35343192585340134628118220893573039021179384935663903971}{2951869271589324159815706925641896398592202217997709791488} a^{17} - \frac{2766357767629880670275554784237920576126709158162207729}{737967317897331039953926731410474099648050554499427447872} a^{16} - \frac{13247229865445800332118968082704643878218984468190332249}{1475934635794662079907853462820948199296101108998854895744} a^{15} + \frac{24695610390528690872017276517153787120914037529224744447}{1475934635794662079907853462820948199296101108998854895744} a^{14} - \frac{28890618773403625353400108215202072078839056562751088955}{1475934635794662079907853462820948199296101108998854895744} a^{13} + \frac{962360185791108405145800783952146785494810146919572897}{173639368917019068224453348567170376387776601058688811264} a^{12} - \frac{118166027323505976768429422919529738356920076022925438525}{2951869271589324159815706925641896398592202217997709791488} a^{11} + \frac{54056797347259493982319658155239178149584974353434360997}{2951869271589324159815706925641896398592202217997709791488} a^{10} - \frac{239851358808291338340438441173629490070698367477741606879}{2951869271589324159815706925641896398592202217997709791488} a^{9} - \frac{22217159401450889784295746101635572031577409069880871511}{1475934635794662079907853462820948199296101108998854895744} a^{8} - \frac{6707998059204889881170881962336254644692772315522826573}{184491829474332759988481682852618524912012638624856861968} a^{7} - \frac{5993406377440545424045892542467663324434077804739157891}{737967317897331039953926731410474099648050554499427447872} a^{6} - \frac{243253239982914916421085651686843562711232086440275059}{3265342114589960353778436864648115485168365285395696672} a^{5} - \frac{40654444839748213784804388738991792051091488016155073109}{184491829474332759988481682852618524912012638624856861968} a^{4} + \frac{8995183155537840323771570321677224803196188605263387581}{23061478684291594998560210356577315614001579828107107746} a^{3} - \frac{568685408750329498656383412842956368180763728259030022}{11530739342145797499280105178288657807000789914053553873} a^{2} + \frac{1634218168064176583893906524982527636432582503942164249}{23061478684291594998560210356577315614001579828107107746} a - \frac{14215858925014464121058965587927741656338352685711764965}{46122957368583189997120420713154631228003159656214215492}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5798487848350000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 111132 |
| The 70 conjugacy class representatives for t21n102 are not computed |
| Character table for t21n102 is not computed |
Intermediate fields
| 3.3.564.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | $21$ | R | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3.12.14.15 | $x^{12} + 9 x^{11} - 6 x^{10} + 6 x^{9} - 3 x^{8} + 9 x^{7} + 6 x^{6} - 9 x^{5} - 9 x^{4} - 9 x^{3} - 9 x^{2} + 9$ | $6$ | $2$ | $14$ | $C_6\times S_3$ | $[3/2]_{2}^{6}$ | |
| 7 | Data not computed | ||||||
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 31.6.4.1 | $x^{6} + 1085 x^{3} + 1660608$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 31.14.0.1 | $x^{14} - x + 12$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | |
| 47 | Data not computed | ||||||