Normalized defining polynomial
\( x^{21} - 7 x^{20} - 7 x^{19} + 175 x^{18} - 301 x^{17} - 1659 x^{16} + 7147 x^{15} - 2403 x^{14} - 36253 x^{13} + 42441 x^{12} + 180299 x^{11} - 484547 x^{10} - 15883 x^{9} + 1455531 x^{8} - 1731731 x^{7} - 623189 x^{6} + 3164084 x^{5} - 2658810 x^{4} - 245532 x^{3} + 1776908 x^{2} - 1293152 x + 262088 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6097778277093810742837573115958479814656=-\,2^{33}\cdot 7^{23}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{3}{8} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{12} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{3}{16} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} + \frac{3}{32} a^{5} + \frac{9}{32} a^{4} + \frac{1}{8} a^{2} - \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{12} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} + \frac{1}{16} a^{8} - \frac{1}{16} a^{7} + \frac{7}{64} a^{6} - \frac{3}{16} a^{5} - \frac{31}{64} a^{4} - \frac{5}{16} a^{3} + \frac{1}{16} a^{2} + \frac{1}{8} a - \frac{3}{16}$, $\frac{1}{64} a^{15} - \frac{1}{64} a^{13} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} + \frac{1}{16} a^{8} - \frac{1}{64} a^{7} + \frac{3}{16} a^{6} - \frac{7}{64} a^{5} - \frac{7}{16} a^{4} + \frac{7}{16} a^{3} - \frac{3}{16} a + \frac{1}{4}$, $\frac{1}{128} a^{16} - \frac{1}{128} a^{14} - \frac{1}{64} a^{13} - \frac{1}{64} a^{12} + \frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{32} a^{9} - \frac{1}{128} a^{8} - \frac{7}{32} a^{7} - \frac{23}{128} a^{6} + \frac{19}{64} a^{5} - \frac{7}{64} a^{4} + \frac{1}{4} a^{3} + \frac{13}{32} a^{2} + \frac{3}{16} a + \frac{7}{16}$, $\frac{1}{512} a^{17} + \frac{1}{512} a^{16} + \frac{3}{512} a^{15} + \frac{1}{512} a^{14} - \frac{5}{256} a^{12} - \frac{1}{64} a^{10} - \frac{5}{512} a^{9} + \frac{35}{512} a^{8} + \frac{121}{512} a^{7} - \frac{5}{512} a^{6} + \frac{41}{128} a^{5} + \frac{23}{256} a^{4} - \frac{7}{128} a^{3} + \frac{7}{128} a^{2} + \frac{1}{4} a - \frac{27}{64}$, $\frac{1}{3072} a^{18} + \frac{5}{1536} a^{16} - \frac{1}{1536} a^{15} - \frac{1}{3072} a^{14} - \frac{7}{512} a^{13} - \frac{31}{1536} a^{12} + \frac{19}{384} a^{11} + \frac{1}{1024} a^{10} - \frac{1}{128} a^{9} + \frac{29}{512} a^{8} - \frac{319}{1536} a^{7} + \frac{163}{1024} a^{6} + \frac{85}{1536} a^{5} + \frac{319}{1536} a^{4} - \frac{109}{384} a^{3} + \frac{329}{768} a^{2} + \frac{157}{384} a - \frac{65}{384}$, $\frac{1}{30720} a^{19} - \frac{1}{10240} a^{18} - \frac{1}{15360} a^{17} - \frac{11}{7680} a^{16} + \frac{209}{30720} a^{15} - \frac{17}{10240} a^{14} - \frac{29}{1920} a^{13} - \frac{203}{15360} a^{12} - \frac{43}{2048} a^{11} - \frac{427}{10240} a^{10} - \frac{9}{1024} a^{9} - \frac{731}{7680} a^{8} - \frac{1683}{10240} a^{7} + \frac{3947}{30720} a^{6} + \frac{187}{960} a^{5} - \frac{7477}{15360} a^{4} + \frac{2459}{7680} a^{3} - \frac{2581}{7680} a^{2} - \frac{47}{240} a - \frac{131}{1280}$, $\frac{1}{939864107984149945185185902007652678819840} a^{20} + \frac{1419177982169687157084522641125654757}{234966026996037486296296475501913169704960} a^{19} - \frac{1371162905838821143740673789007118077}{9893306399833157317738798968501607145472} a^{18} + \frac{128054597342249098997035324758914173889}{156644017997358324197530983667942113136640} a^{17} + \frac{98684578717952249261419190025397915}{9893306399833157317738798968501607145472} a^{16} - \frac{1592749001496362139325051499365882494493}{234966026996037486296296475501913169704960} a^{15} - \frac{350688615112999033902216296770407379143}{62657607198943329679012393467176845254656} a^{14} + \frac{570785641486249909184916959500362300901}{93986410798414994518518590200765267881984} a^{13} - \frac{19565363631231731268723300743783818985431}{939864107984149945185185902007652678819840} a^{12} + \frac{4170595815142348100303061097682718465851}{234966026996037486296296475501913169704960} a^{11} + \frac{14007160352653468270611279726175487812653}{313288035994716648395061967335884226273280} a^{10} + \frac{19371777404325123037509265708890812534153}{469932053992074972592592951003826339409920} a^{9} - \frac{43929736199666572118497716907619160575413}{939864107984149945185185902007652678819840} a^{8} + \frac{8773860126592502066467019160370652055879}{78322008998679162098765491833971056568320} a^{7} + \frac{75064601244231699377777643364752125548107}{313288035994716648395061967335884226273280} a^{6} + \frac{23149779330928046016149733123453145081459}{93986410798414994518518590200765267881984} a^{5} - \frac{70457152898487928452226717723831094022923}{156644017997358324197530983667942113136640} a^{4} + \frac{56286081854817343078996329485477450047}{772914562486965415448343669414188058240} a^{3} - \frac{7116996027712157867112722928210739471187}{46993205399207497259259295100382633940992} a^{2} + \frac{1048429962136110511341273785046339515717}{7832200899867916209876549183397105656832} a + \frac{7434791915364283993173086223976336973917}{117483013498018743148148237750956584852480}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 51859841553800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 588 |
| The 19 conjugacy class representatives for t21n23 |
| Character table for t21n23 |
Intermediate fields
| 3.3.4312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 7 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |