Properties

Label 21.3.587...343.1
Degree $21$
Signature $[3, 9]$
Discriminant $-5.876\times 10^{43}$
Root discriminant \(121.41\)
Ramified primes $7,43$
Class number $7$ (GRH)
Class group [7] (GRH)
Galois group $F_7$ (as 21T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 330*x^17 - 2629*x^16 + 9945*x^15 - 21697*x^14 + 61691*x^13 - 337490*x^12 + 1367751*x^11 - 3880770*x^10 + 9707987*x^9 - 27063618*x^8 + 86251922*x^7 - 249930855*x^6 + 516125610*x^5 - 636836088*x^4 + 367896053*x^3 + 18430223*x^2 - 116740442*x + 35136283)
 
Copy content gp:K = bnfinit(y^21 - 7*y^20 + 21*y^19 - 34*y^18 + 330*y^17 - 2629*y^16 + 9945*y^15 - 21697*y^14 + 61691*y^13 - 337490*y^12 + 1367751*y^11 - 3880770*y^10 + 9707987*y^9 - 27063618*y^8 + 86251922*y^7 - 249930855*y^6 + 516125610*y^5 - 636836088*y^4 + 367896053*y^3 + 18430223*y^2 - 116740442*y + 35136283, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 330*x^17 - 2629*x^16 + 9945*x^15 - 21697*x^14 + 61691*x^13 - 337490*x^12 + 1367751*x^11 - 3880770*x^10 + 9707987*x^9 - 27063618*x^8 + 86251922*x^7 - 249930855*x^6 + 516125610*x^5 - 636836088*x^4 + 367896053*x^3 + 18430223*x^2 - 116740442*x + 35136283);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 330*x^17 - 2629*x^16 + 9945*x^15 - 21697*x^14 + 61691*x^13 - 337490*x^12 + 1367751*x^11 - 3880770*x^10 + 9707987*x^9 - 27063618*x^8 + 86251922*x^7 - 249930855*x^6 + 516125610*x^5 - 636836088*x^4 + 367896053*x^3 + 18430223*x^2 - 116740442*x + 35136283)
 

\( x^{21} - 7 x^{20} + 21 x^{19} - 34 x^{18} + 330 x^{17} - 2629 x^{16} + 9945 x^{15} - 21697 x^{14} + \cdots + 35136283 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $21$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[3, 9]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-58762312802028807390251370834685864006539343\) \(\medspace = -\,7^{17}\cdot 43^{18}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(121.41\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $7^{5/6}43^{6/7}\approx 127.16400157052036$
Ramified primes:   \(7\), \(43\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{-7}) \)
$\Aut(K/\Q)$:   $C_3$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{10}-\frac{1}{4}a^{8}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{4}a^{7}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{4}a^{14}-\frac{1}{4}$, $\frac{1}{8}a^{15}-\frac{1}{8}a^{14}-\frac{1}{8}a^{13}+\frac{1}{8}a^{11}+\frac{1}{8}a^{9}-\frac{1}{4}a^{8}+\frac{1}{8}a^{7}-\frac{1}{8}a^{5}+\frac{1}{4}a^{4}+\frac{3}{8}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{8}$, $\frac{1}{8}a^{16}-\frac{1}{8}a^{13}-\frac{1}{8}a^{12}+\frac{1}{8}a^{11}-\frac{1}{8}a^{10}-\frac{1}{8}a^{9}+\frac{1}{8}a^{8}+\frac{1}{8}a^{7}+\frac{1}{8}a^{6}-\frac{3}{8}a^{5}-\frac{1}{8}a^{4}-\frac{3}{8}a^{3}-\frac{1}{2}a^{2}+\frac{3}{8}a-\frac{1}{8}$, $\frac{1}{104}a^{17}+\frac{5}{104}a^{16}-\frac{5}{104}a^{15}-\frac{3}{26}a^{14}-\frac{9}{104}a^{13}+\frac{3}{26}a^{12}-\frac{1}{8}a^{11}+\frac{1}{52}a^{10}-\frac{1}{104}a^{9}-\frac{3}{26}a^{8}+\frac{25}{104}a^{7}-\frac{11}{52}a^{6}-\frac{27}{104}a^{5}-\frac{23}{52}a^{4}+\frac{19}{52}a^{3}-\frac{31}{104}a^{2}+\frac{15}{52}a$, $\frac{1}{3255616}a^{18}-\frac{1821}{465088}a^{17}+\frac{291}{17888}a^{16}-\frac{36713}{813904}a^{15}-\frac{2127}{3255616}a^{14}+\frac{205845}{3255616}a^{13}+\frac{24121}{1627808}a^{12}-\frac{178371}{3255616}a^{11}+\frac{34425}{232544}a^{10}+\frac{22441}{250432}a^{9}+\frac{701}{17888}a^{8}+\frac{541193}{3255616}a^{7}+\frac{396313}{1627808}a^{6}+\frac{1116653}{3255616}a^{5}-\frac{1626295}{3255616}a^{4}+\frac{2865}{813904}a^{3}-\frac{2143}{7267}a^{2}+\frac{33379}{465088}a-\frac{10481}{35776}$, $\frac{1}{3255616}a^{19}+\frac{487}{465088}a^{17}+\frac{69717}{1627808}a^{16}+\frac{148541}{3255616}a^{15}+\frac{901}{203476}a^{14}-\frac{228559}{3255616}a^{13}+\frac{202275}{3255616}a^{12}+\frac{61091}{465088}a^{11}-\frac{327697}{3255616}a^{10}-\frac{3833}{35776}a^{9}-\frac{102541}{3255616}a^{8}+\frac{259933}{3255616}a^{7}+\frac{27119}{250432}a^{6}-\frac{33}{2366}a^{5}+\frac{953527}{3255616}a^{4}-\frac{51599}{116272}a^{3}-\frac{196501}{465088}a^{2}-\frac{14403}{116272}a+\frac{4165}{35776}$, $\frac{1}{79\cdots 44}a^{20}-\frac{18\cdots 31}{39\cdots 72}a^{19}-\frac{97\cdots 87}{79\cdots 44}a^{18}+\frac{97\cdots 35}{23\cdots 76}a^{17}-\frac{23\cdots 79}{79\cdots 44}a^{16}+\frac{20\cdots 01}{39\cdots 72}a^{15}+\frac{65\cdots 01}{79\cdots 44}a^{14}-\frac{91\cdots 99}{79\cdots 44}a^{13}-\frac{97\cdots 53}{79\cdots 44}a^{12}+\frac{13\cdots 49}{79\cdots 44}a^{11}+\frac{15\cdots 63}{79\cdots 44}a^{10}-\frac{88\cdots 83}{79\cdots 44}a^{9}+\frac{39\cdots 11}{79\cdots 44}a^{8}-\frac{87\cdots 35}{79\cdots 44}a^{7}-\frac{18\cdots 05}{39\cdots 72}a^{6}-\frac{17\cdots 65}{79\cdots 44}a^{5}+\frac{18\cdots 91}{39\cdots 72}a^{4}+\frac{35\cdots 73}{79\cdots 44}a^{3}-\frac{10\cdots 07}{56\cdots 96}a^{2}+\frac{17\cdots 05}{11\cdots 92}a+\frac{13\cdots 43}{43\cdots 92}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  $C_{7}$, which has order $7$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{7}$, which has order $7$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $11$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{21\cdots 57}{63\cdots 28}a^{20}-\frac{16\cdots 87}{79\cdots 16}a^{19}+\frac{93\cdots 33}{18\cdots 08}a^{18}-\frac{84\cdots 03}{12\cdots 56}a^{17}+\frac{33\cdots 59}{31\cdots 64}a^{16}-\frac{35\cdots 27}{45\cdots 52}a^{15}+\frac{33\cdots 55}{12\cdots 56}a^{14}-\frac{62\cdots 65}{12\cdots 56}a^{13}+\frac{51\cdots 57}{31\cdots 64}a^{12}-\frac{12\cdots 05}{12\cdots 56}a^{11}+\frac{29\cdots 43}{79\cdots 16}a^{10}-\frac{12\cdots 73}{12\cdots 56}a^{9}+\frac{18\cdots 93}{79\cdots 16}a^{8}-\frac{12\cdots 19}{18\cdots 08}a^{7}+\frac{14\cdots 81}{63\cdots 28}a^{6}-\frac{80\cdots 69}{12\cdots 56}a^{5}+\frac{14\cdots 65}{12\cdots 56}a^{4}-\frac{98\cdots 03}{90\cdots 04}a^{3}+\frac{15\cdots 13}{56\cdots 94}a^{2}+\frac{46\cdots 65}{18\cdots 08}a-\frac{18\cdots 73}{13\cdots 16}$, $\frac{33\cdots 61}{12\cdots 56}a^{20}-\frac{99\cdots 97}{63\cdots 28}a^{19}+\frac{71\cdots 69}{18\cdots 08}a^{18}-\frac{31\cdots 03}{63\cdots 28}a^{17}+\frac{10\cdots 53}{12\cdots 56}a^{16}-\frac{38\cdots 85}{63\cdots 28}a^{15}+\frac{36\cdots 17}{18\cdots 08}a^{14}-\frac{47\cdots 01}{12\cdots 56}a^{13}+\frac{15\cdots 83}{12\cdots 56}a^{12}-\frac{96\cdots 89}{12\cdots 56}a^{11}+\frac{35\cdots 39}{12\cdots 56}a^{10}-\frac{93\cdots 49}{12\cdots 56}a^{9}+\frac{22\cdots 75}{12\cdots 56}a^{8}-\frac{66\cdots 49}{12\cdots 56}a^{7}+\frac{10\cdots 07}{63\cdots 28}a^{6}-\frac{61\cdots 59}{12\cdots 56}a^{5}+\frac{13\cdots 37}{15\cdots 32}a^{4}-\frac{14\cdots 97}{18\cdots 08}a^{3}+\frac{10\cdots 07}{69\cdots 08}a^{2}+\frac{42\cdots 71}{18\cdots 08}a-\frac{36\cdots 57}{34\cdots 04}$, $\frac{37\cdots 63}{11\cdots 92}a^{20}-\frac{39\cdots 81}{19\cdots 36}a^{19}+\frac{47\cdots 97}{99\cdots 68}a^{18}-\frac{66\cdots 81}{11\cdots 92}a^{17}+\frac{81\cdots 47}{79\cdots 44}a^{16}-\frac{10\cdots 63}{14\cdots 24}a^{15}+\frac{61\cdots 55}{24\cdots 42}a^{14}-\frac{17\cdots 51}{39\cdots 72}a^{13}+\frac{94\cdots 71}{61\cdots 88}a^{12}-\frac{37\cdots 97}{39\cdots 72}a^{11}+\frac{27\cdots 27}{79\cdots 44}a^{10}-\frac{35\cdots 59}{39\cdots 72}a^{9}+\frac{17\cdots 51}{79\cdots 44}a^{8}-\frac{37\cdots 15}{56\cdots 96}a^{7}+\frac{85\cdots 73}{39\cdots 72}a^{6}-\frac{23\cdots 27}{39\cdots 72}a^{5}+\frac{11\cdots 65}{11\cdots 92}a^{4}-\frac{73\cdots 55}{79\cdots 44}a^{3}+\frac{19\cdots 15}{14\cdots 24}a^{2}+\frac{14\cdots 63}{56\cdots 96}a-\frac{85\cdots 03}{87\cdots 84}$, $\frac{27\cdots 71}{39\cdots 72}a^{20}-\frac{47\cdots 95}{11\cdots 92}a^{19}+\frac{83\cdots 99}{79\cdots 44}a^{18}-\frac{26\cdots 45}{19\cdots 36}a^{17}+\frac{19\cdots 13}{92\cdots 04}a^{16}-\frac{18\cdots 59}{11\cdots 92}a^{15}+\frac{42\cdots 47}{79\cdots 44}a^{14}-\frac{30\cdots 91}{30\cdots 44}a^{13}+\frac{26\cdots 49}{79\cdots 44}a^{12}-\frac{79\cdots 57}{39\cdots 72}a^{11}+\frac{85\cdots 75}{11\cdots 92}a^{10}-\frac{77\cdots 09}{39\cdots 72}a^{9}+\frac{38\cdots 13}{79\cdots 44}a^{8}-\frac{79\cdots 01}{56\cdots 96}a^{7}+\frac{36\cdots 51}{79\cdots 44}a^{6}-\frac{10\cdots 49}{79\cdots 44}a^{5}+\frac{71\cdots 95}{30\cdots 44}a^{4}-\frac{85\cdots 65}{39\cdots 72}a^{3}+\frac{52\cdots 49}{11\cdots 92}a^{2}+\frac{65\cdots 53}{11\cdots 92}a-\frac{10\cdots 53}{43\cdots 92}$, $\frac{21\cdots 43}{99\cdots 68}a^{20}-\frac{54\cdots 65}{39\cdots 72}a^{19}+\frac{41\cdots 47}{11\cdots 92}a^{18}-\frac{93\cdots 11}{18\cdots 08}a^{17}+\frac{29\cdots 57}{43\cdots 92}a^{16}-\frac{20\cdots 95}{39\cdots 72}a^{15}+\frac{14\cdots 93}{79\cdots 44}a^{14}-\frac{28\cdots 37}{79\cdots 44}a^{13}+\frac{22\cdots 07}{19\cdots 36}a^{12}-\frac{52\cdots 81}{79\cdots 44}a^{11}+\frac{12\cdots 23}{49\cdots 84}a^{10}-\frac{53\cdots 73}{79\cdots 44}a^{9}+\frac{23\cdots 25}{14\cdots 24}a^{8}-\frac{38\cdots 61}{79\cdots 44}a^{7}+\frac{23\cdots 25}{15\cdots 72}a^{6}-\frac{49\cdots 01}{11\cdots 92}a^{5}+\frac{66\cdots 39}{79\cdots 44}a^{4}-\frac{24\cdots 15}{28\cdots 48}a^{3}+\frac{17\cdots 49}{56\cdots 96}a^{2}+\frac{21\cdots 91}{11\cdots 92}a-\frac{12\cdots 91}{87\cdots 84}$, $\frac{11\cdots 11}{72\cdots 52}a^{20}-\frac{54\cdots 81}{72\cdots 52}a^{19}+\frac{28\cdots 87}{16\cdots 64}a^{18}-\frac{12\cdots 73}{72\cdots 52}a^{17}+\frac{36\cdots 17}{72\cdots 52}a^{16}-\frac{22\cdots 05}{72\cdots 52}a^{15}+\frac{92\cdots 03}{10\cdots 36}a^{14}-\frac{53\cdots 63}{36\cdots 76}a^{13}+\frac{17\cdots 89}{26\cdots 84}a^{12}-\frac{14\cdots 23}{36\cdots 76}a^{11}+\frac{22\cdots 89}{17\cdots 22}a^{10}-\frac{11\cdots 09}{36\cdots 76}a^{9}+\frac{14\cdots 75}{18\cdots 88}a^{8}-\frac{90\cdots 97}{36\cdots 76}a^{7}+\frac{59\cdots 05}{72\cdots 52}a^{6}-\frac{22\cdots 59}{10\cdots 36}a^{5}+\frac{24\cdots 59}{72\cdots 52}a^{4}-\frac{14\cdots 57}{56\cdots 04}a^{3}+\frac{23\cdots 73}{10\cdots 36}a^{2}+\frac{58\cdots 41}{80\cdots 72}a-\frac{15\cdots 23}{61\cdots 44}$, $\frac{56\cdots 83}{79\cdots 44}a^{20}-\frac{17\cdots 09}{39\cdots 72}a^{19}+\frac{10\cdots 03}{99\cdots 68}a^{18}-\frac{11\cdots 11}{79\cdots 44}a^{17}+\frac{17\cdots 17}{79\cdots 44}a^{16}-\frac{66\cdots 47}{39\cdots 72}a^{15}+\frac{54\cdots 97}{99\cdots 68}a^{14}-\frac{72\cdots 91}{70\cdots 12}a^{13}+\frac{27\cdots 39}{79\cdots 44}a^{12}-\frac{41\cdots 27}{19\cdots 36}a^{11}+\frac{61\cdots 71}{79\cdots 44}a^{10}-\frac{28\cdots 05}{14\cdots 24}a^{9}+\frac{39\cdots 23}{79\cdots 44}a^{8}-\frac{28\cdots 77}{19\cdots 36}a^{7}+\frac{94\cdots 71}{19\cdots 36}a^{6}-\frac{52\cdots 41}{39\cdots 72}a^{5}+\frac{27\cdots 65}{11\cdots 92}a^{4}-\frac{17\cdots 93}{79\cdots 44}a^{3}+\frac{27\cdots 91}{56\cdots 96}a^{2}+\frac{33\cdots 13}{56\cdots 96}a-\frac{22\cdots 87}{87\cdots 84}$, $\frac{42\cdots 01}{24\cdots 42}a^{20}-\frac{32\cdots 31}{39\cdots 72}a^{19}+\frac{21\cdots 25}{11\cdots 92}a^{18}-\frac{16\cdots 59}{79\cdots 44}a^{17}+\frac{16\cdots 05}{30\cdots 44}a^{16}-\frac{13\cdots 69}{39\cdots 72}a^{15}+\frac{79\cdots 51}{79\cdots 44}a^{14}-\frac{13\cdots 87}{79\cdots 44}a^{13}+\frac{14\cdots 91}{19\cdots 36}a^{12}-\frac{33\cdots 55}{79\cdots 44}a^{11}+\frac{14\cdots 45}{99\cdots 68}a^{10}-\frac{29\cdots 11}{79\cdots 44}a^{9}+\frac{45\cdots 31}{49\cdots 84}a^{8}-\frac{16\cdots 79}{61\cdots 88}a^{7}+\frac{25\cdots 65}{28\cdots 48}a^{6}-\frac{19\cdots 45}{79\cdots 44}a^{5}+\frac{31\cdots 29}{79\cdots 44}a^{4}-\frac{89\cdots 79}{28\cdots 48}a^{3}+\frac{27\cdots 75}{56\cdots 96}a^{2}+\frac{95\cdots 57}{11\cdots 92}a-\frac{32\cdots 05}{87\cdots 84}$, $\frac{74\cdots 21}{39\cdots 72}a^{20}-\frac{10\cdots 37}{11\cdots 92}a^{19}+\frac{14\cdots 95}{79\cdots 44}a^{18}-\frac{14\cdots 31}{92\cdots 04}a^{17}+\frac{22\cdots 75}{39\cdots 72}a^{16}-\frac{29\cdots 11}{79\cdots 44}a^{15}+\frac{11\cdots 57}{11\cdots 92}a^{14}-\frac{14\cdots 59}{99\cdots 68}a^{13}+\frac{58\cdots 31}{79\cdots 44}a^{12}-\frac{13\cdots 51}{28\cdots 48}a^{11}+\frac{16\cdots 41}{11\cdots 92}a^{10}-\frac{70\cdots 11}{19\cdots 36}a^{9}+\frac{71\cdots 03}{79\cdots 44}a^{8}-\frac{27\cdots 03}{99\cdots 68}a^{7}+\frac{73\cdots 45}{79\cdots 44}a^{6}-\frac{19\cdots 85}{79\cdots 44}a^{5}+\frac{70\cdots 71}{19\cdots 36}a^{4}-\frac{58\cdots 75}{30\cdots 44}a^{3}-\frac{46\cdots 65}{11\cdots 92}a^{2}+\frac{73\cdots 81}{11\cdots 92}a-\frac{75\cdots 73}{54\cdots 24}$, $\frac{82\cdots 35}{79\cdots 44}a^{20}-\frac{64\cdots 17}{99\cdots 68}a^{19}+\frac{13\cdots 65}{79\cdots 44}a^{18}-\frac{43\cdots 67}{19\cdots 36}a^{17}+\frac{25\cdots 11}{79\cdots 44}a^{16}-\frac{24\cdots 73}{99\cdots 68}a^{15}+\frac{67\cdots 01}{79\cdots 44}a^{14}-\frac{29\cdots 23}{18\cdots 08}a^{13}+\frac{40\cdots 59}{79\cdots 44}a^{12}-\frac{24\cdots 53}{79\cdots 44}a^{11}+\frac{94\cdots 83}{79\cdots 44}a^{10}-\frac{24\cdots 05}{79\cdots 44}a^{9}+\frac{60\cdots 35}{79\cdots 44}a^{8}-\frac{17\cdots 73}{79\cdots 44}a^{7}+\frac{11\cdots 49}{15\cdots 72}a^{6}-\frac{12\cdots 85}{61\cdots 88}a^{5}+\frac{15\cdots 53}{39\cdots 72}a^{4}-\frac{21\cdots 21}{61\cdots 88}a^{3}+\frac{24\cdots 05}{28\cdots 48}a^{2}+\frac{10\cdots 89}{11\cdots 92}a-\frac{19\cdots 79}{43\cdots 92}$, $\frac{96\cdots 57}{61\cdots 88}a^{20}-\frac{98\cdots 53}{79\cdots 44}a^{19}+\frac{28\cdots 41}{79\cdots 44}a^{18}-\frac{35\cdots 43}{79\cdots 44}a^{17}+\frac{40\cdots 15}{79\cdots 44}a^{16}-\frac{35\cdots 49}{79\cdots 44}a^{15}+\frac{13\cdots 85}{79\cdots 44}a^{14}-\frac{13\cdots 89}{39\cdots 72}a^{13}+\frac{35\cdots 73}{39\cdots 72}a^{12}-\frac{22\cdots 77}{39\cdots 72}a^{11}+\frac{93\cdots 27}{39\cdots 72}a^{10}-\frac{18\cdots 75}{30\cdots 44}a^{9}+\frac{59\cdots 25}{39\cdots 72}a^{8}-\frac{17\cdots 31}{39\cdots 72}a^{7}+\frac{10\cdots 37}{79\cdots 44}a^{6}-\frac{32\cdots 33}{79\cdots 44}a^{5}+\frac{63\cdots 09}{79\cdots 44}a^{4}-\frac{62\cdots 79}{79\cdots 44}a^{3}+\frac{21\cdots 05}{11\cdots 92}a^{2}+\frac{23\cdots 49}{11\cdots 92}a-\frac{81\cdots 65}{87\cdots 84}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 17109387227548.602 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{9}\cdot 17109387227548.602 \cdot 7}{2\cdot\sqrt{58762312802028807390251370834685864006539343}}\cr\approx \mathstrut & 0.953809978949905 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 330*x^17 - 2629*x^16 + 9945*x^15 - 21697*x^14 + 61691*x^13 - 337490*x^12 + 1367751*x^11 - 3880770*x^10 + 9707987*x^9 - 27063618*x^8 + 86251922*x^7 - 249930855*x^6 + 516125610*x^5 - 636836088*x^4 + 367896053*x^3 + 18430223*x^2 - 116740442*x + 35136283) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 330*x^17 - 2629*x^16 + 9945*x^15 - 21697*x^14 + 61691*x^13 - 337490*x^12 + 1367751*x^11 - 3880770*x^10 + 9707987*x^9 - 27063618*x^8 + 86251922*x^7 - 249930855*x^6 + 516125610*x^5 - 636836088*x^4 + 367896053*x^3 + 18430223*x^2 - 116740442*x + 35136283, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 330*x^17 - 2629*x^16 + 9945*x^15 - 21697*x^14 + 61691*x^13 - 337490*x^12 + 1367751*x^11 - 3880770*x^10 + 9707987*x^9 - 27063618*x^8 + 86251922*x^7 - 249930855*x^6 + 516125610*x^5 - 636836088*x^4 + 367896053*x^3 + 18430223*x^2 - 116740442*x + 35136283); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 330*x^17 - 2629*x^16 + 9945*x^15 - 21697*x^14 + 61691*x^13 - 337490*x^12 + 1367751*x^11 - 3880770*x^10 + 9707987*x^9 - 27063618*x^8 + 86251922*x^7 - 249930855*x^6 + 516125610*x^5 - 636836088*x^4 + 367896053*x^3 + 18430223*x^2 - 116740442*x + 35136283); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$F_7$ (as 21T4):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 42
The 7 conjugacy class representatives for $F_7$
Character table for $F_7$

Intermediate fields

\(\Q(\zeta_{7})^+\), 7.1.106243148764543.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 42
Degree 7 sibling: 7.1.106243148764543.1
Degree 14 sibling: deg 14
Minimal sibling: 7.1.106243148764543.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.3.0.1}{3} }^{7}$ ${\href{/padicField/3.6.0.1}{6} }^{3}{,}\,{\href{/padicField/3.3.0.1}{3} }$ ${\href{/padicField/5.6.0.1}{6} }^{3}{,}\,{\href{/padicField/5.3.0.1}{3} }$ R ${\href{/padicField/11.3.0.1}{3} }^{7}$ ${\href{/padicField/13.2.0.1}{2} }^{9}{,}\,{\href{/padicField/13.1.0.1}{1} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }^{3}{,}\,{\href{/padicField/17.3.0.1}{3} }$ ${\href{/padicField/19.6.0.1}{6} }^{3}{,}\,{\href{/padicField/19.3.0.1}{3} }$ ${\href{/padicField/23.3.0.1}{3} }^{7}$ ${\href{/padicField/29.7.0.1}{7} }^{3}$ ${\href{/padicField/31.6.0.1}{6} }^{3}{,}\,{\href{/padicField/31.3.0.1}{3} }$ ${\href{/padicField/37.3.0.1}{3} }^{7}$ ${\href{/padicField/41.2.0.1}{2} }^{9}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ R ${\href{/padicField/47.6.0.1}{6} }^{3}{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.3.0.1}{3} }^{7}$ ${\href{/padicField/59.6.0.1}{6} }^{3}{,}\,{\href{/padicField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display 7.1.3.2a1.1$x^{3} + 7$$3$$1$$2$$C_3$$$[\ ]_{3}$$
7.1.6.5a1.1$x^{6} + 7$$6$$1$$5$$C_6$$$[\ ]_{6}$$
7.1.6.5a1.1$x^{6} + 7$$6$$1$$5$$C_6$$$[\ ]_{6}$$
7.1.6.5a1.1$x^{6} + 7$$6$$1$$5$$C_6$$$[\ ]_{6}$$
\(43\) Copy content Toggle raw display 43.1.7.6a1.2$x^{7} + 129$$7$$1$$6$$C_7$$$[\ ]_{7}$$
43.1.7.6a1.2$x^{7} + 129$$7$$1$$6$$C_7$$$[\ ]_{7}$$
43.1.7.6a1.2$x^{7} + 129$$7$$1$$6$$C_7$$$[\ ]_{7}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)