Normalized defining polynomial
\( x^{21} - 7 x^{20} + 21 x^{19} - 34 x^{18} + 330 x^{17} - 2629 x^{16} + 9945 x^{15} - 21697 x^{14} + 61691 x^{13} - 337490 x^{12} + 1367751 x^{11} - 3880770 x^{10} + 9707987 x^{9} - 27063618 x^{8} + 86251922 x^{7} - 249930855 x^{6} + 516125610 x^{5} - 636836088 x^{4} + 367896053 x^{3} + 18430223 x^{2} - 116740442 x + 35136283 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-58762312802028807390251370834685864006539343=-\,7^{17}\cdot 43^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $121.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{8} a^{13} + \frac{1}{8} a^{11} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{8}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} + \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{3}{8} a^{5} - \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{3}{8} a - \frac{1}{8}$, $\frac{1}{104} a^{17} + \frac{5}{104} a^{16} - \frac{5}{104} a^{15} - \frac{3}{26} a^{14} - \frac{9}{104} a^{13} + \frac{3}{26} a^{12} - \frac{1}{8} a^{11} + \frac{1}{52} a^{10} - \frac{1}{104} a^{9} - \frac{3}{26} a^{8} + \frac{25}{104} a^{7} - \frac{11}{52} a^{6} - \frac{27}{104} a^{5} - \frac{23}{52} a^{4} + \frac{19}{52} a^{3} - \frac{31}{104} a^{2} + \frac{15}{52} a$, $\frac{1}{3255616} a^{18} - \frac{1821}{465088} a^{17} + \frac{291}{17888} a^{16} - \frac{36713}{813904} a^{15} - \frac{2127}{3255616} a^{14} + \frac{205845}{3255616} a^{13} + \frac{24121}{1627808} a^{12} - \frac{178371}{3255616} a^{11} + \frac{34425}{232544} a^{10} + \frac{22441}{250432} a^{9} + \frac{701}{17888} a^{8} + \frac{541193}{3255616} a^{7} + \frac{396313}{1627808} a^{6} + \frac{1116653}{3255616} a^{5} - \frac{1626295}{3255616} a^{4} + \frac{2865}{813904} a^{3} - \frac{2143}{7267} a^{2} + \frac{33379}{465088} a - \frac{10481}{35776}$, $\frac{1}{3255616} a^{19} + \frac{487}{465088} a^{17} + \frac{69717}{1627808} a^{16} + \frac{148541}{3255616} a^{15} + \frac{901}{203476} a^{14} - \frac{228559}{3255616} a^{13} + \frac{202275}{3255616} a^{12} + \frac{61091}{465088} a^{11} - \frac{327697}{3255616} a^{10} - \frac{3833}{35776} a^{9} - \frac{102541}{3255616} a^{8} + \frac{259933}{3255616} a^{7} + \frac{27119}{250432} a^{6} - \frac{33}{2366} a^{5} + \frac{953527}{3255616} a^{4} - \frac{51599}{116272} a^{3} - \frac{196501}{465088} a^{2} - \frac{14403}{116272} a + \frac{4165}{35776}$, $\frac{1}{7942738199999058761139309320519111762477517872496307797387617344} a^{20} - \frac{185825817346540593466469340511354390546220378591243563831}{3971369099999529380569654660259555881238758936248153898693808672} a^{19} - \frac{971822190626764188679990753933562548335083745551152848787}{7942738199999058761139309320519111762477517872496307797387617344} a^{18} + \frac{97465886504903130560761571759457713701168417777502843598335}{23089355232555403375404968954997417914178831024698569178452376} a^{17} - \frac{235571820713422227686226650034284356218872007493099902322545879}{7942738199999058761139309320519111762477517872496307797387617344} a^{16} + \frac{208051582399077618818313042256000464377713106388628914735362701}{3971369099999529380569654660259555881238758936248153898693808672} a^{15} + \frac{658452454128299248533296687842129086632056439427565091861539101}{7942738199999058761139309320519111762477517872496307797387617344} a^{14} - \frac{912193275876843427394145317346207041111636076206781364849352399}{7942738199999058761139309320519111762477517872496307797387617344} a^{13} - \frac{977593219042737108611770649836840827524119347730980536165986253}{7942738199999058761139309320519111762477517872496307797387617344} a^{12} + \frac{1367926921932406481828383968743445945952179503314842902277229349}{7942738199999058761139309320519111762477517872496307797387617344} a^{11} + \frac{1597084436591304225140578402211608665393443263371224635433580963}{7942738199999058761139309320519111762477517872496307797387617344} a^{10} - \frac{886557359318321176830381314216851581808719444664824343476050983}{7942738199999058761139309320519111762477517872496307797387617344} a^{9} + \frac{392201747051919622717661275656988788203356311504157886754012811}{7942738199999058761139309320519111762477517872496307797387617344} a^{8} - \frac{877399752853145731028456606143904156872545157548996809696096135}{7942738199999058761139309320519111762477517872496307797387617344} a^{7} - \frac{183126868196772668317183575501268674364890396333836195381780705}{3971369099999529380569654660259555881238758936248153898693808672} a^{6} - \frac{1754949435936989293654585431539020101142752225421161012189601965}{7942738199999058761139309320519111762477517872496307797387617344} a^{5} + \frac{1815791980488574654863219436326120409779818573820273667492643891}{3971369099999529380569654660259555881238758936248153898693808672} a^{4} + \frac{3541110847592200337207802792744857302246852541540376234543877573}{7942738199999058761139309320519111762477517872496307797387617344} a^{3} - \frac{1046565099610984294867443757792813087981797838763380091777307}{567338442857075625795664951465650840176965562321164842670544096} a^{2} + \frac{178459432534935443017862709130266126853707358277017829730319805}{1134676885714151251591329902931301680353931124642329685341088192} a + \frac{13848688122125449260438255213528237473719878074536551771304543}{43641418681313509676589611651203910782843504793935757128503392}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17109387227548.602 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), Deg 7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 7 sibling: | data not computed |
| Degree 14 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $43$ | 43.7.6.5 | $x^{7} - 282123$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 43.7.6.5 | $x^{7} - 282123$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 43.7.6.5 | $x^{7} - 282123$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |