Normalized defining polynomial
\( x^{21} - 3 x^{20} - 108 x^{19} + 123 x^{18} + 5442 x^{17} + 3396 x^{16} - 152836 x^{15} - 344844 x^{14} + 2292597 x^{13} + 9796933 x^{12} - 10997643 x^{11} - 130149309 x^{10} - 166799713 x^{9} + 659286855 x^{8} + 2506068363 x^{7} + 1933441494 x^{6} - 6878938746 x^{5} - 22716122469 x^{4} - 32835062271 x^{3} - 27152679840 x^{2} - 12561579456 x - 2552276719 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5707572910555511153068160996700949842685179=-\,3^{9}\cdot 37^{3}\cdot 2381^{3}\cdot 232597^{2}\cdot 2799847^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $108.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37, 2381, 232597, 2799847$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{16} - \frac{1}{9} a^{15} - \frac{1}{9} a^{14} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{2}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{2}{9} a^{6} + \frac{1}{9} a^{5} + \frac{4}{9} a^{4} - \frac{1}{9} a^{3} - \frac{2}{9} a^{2} - \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{16} - \frac{1}{9} a^{13} + \frac{1}{9} a^{10} + \frac{1}{3} a^{9} - \frac{1}{9} a^{7} - \frac{1}{3} a^{6} + \frac{4}{9} a^{4} - \frac{1}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{19} - \frac{1}{9} a^{16} + \frac{1}{9} a^{15} + \frac{1}{9} a^{13} - \frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{4}{9} a^{9} + \frac{1}{9} a^{7} - \frac{4}{9} a^{6} + \frac{1}{9} a^{4} + \frac{4}{9} a^{3} - \frac{1}{3} a^{2} + \frac{4}{9}$, $\frac{1}{3831455406373639685426385439343401561640448585995129133033212013} a^{20} - \frac{13326734710114522791036711934705274256477846988803987545206804}{425717267374848853936265048815933506848938731777236570337023557} a^{19} + \frac{77578237141493654467402209663998460207928528255185624073797290}{3831455406373639685426385439343401561640448585995129133033212013} a^{18} + \frac{37115256148284865939135403767960883953801315094384843357473154}{3831455406373639685426385439343401561640448585995129133033212013} a^{17} + \frac{168696705863211788616391385075835421345611457568100140888257180}{1277151802124546561808795146447800520546816195331709711011070671} a^{16} + \frac{44976844821011772160770857898789781769104393660056622473306134}{425717267374848853936265048815933506848938731777236570337023557} a^{15} - \frac{543338774603519792649921360630411211361941101356284958581379633}{3831455406373639685426385439343401561640448585995129133033212013} a^{14} - \frac{6964630853786072542177664266943022460748279241103277120288702}{1277151802124546561808795146447800520546816195331709711011070671} a^{13} - \frac{61254513754613495907227187795663959111099442593480357132992150}{1277151802124546561808795146447800520546816195331709711011070671} a^{12} - \frac{307347292718223933327728837304496292470206668336695047463728895}{3831455406373639685426385439343401561640448585995129133033212013} a^{11} - \frac{56105470300218590998695851496177357268779265241418621983926729}{1277151802124546561808795146447800520546816195331709711011070671} a^{10} - \frac{177554841512793243859914814108232958705895676128220450032547366}{425717267374848853936265048815933506848938731777236570337023557} a^{9} + \frac{832789783309827810767954841974894955317388420800930550923523070}{3831455406373639685426385439343401561640448585995129133033212013} a^{8} + \frac{295072483784822157862934091136467903980120949221502247215809656}{1277151802124546561808795146447800520546816195331709711011070671} a^{7} - \frac{56089644025375722486763207836274395127229528394617755801531845}{425717267374848853936265048815933506848938731777236570337023557} a^{6} + \frac{1989670103213162586593809515824612161585116812052674431496998}{3831455406373639685426385439343401561640448585995129133033212013} a^{5} + \frac{74907479343271710335561794338918387839401192444643743686964571}{1277151802124546561808795146447800520546816195331709711011070671} a^{4} + \frac{1288707155102801816909708407597088504360701496269923275859690775}{3831455406373639685426385439343401561640448585995129133033212013} a^{3} + \frac{425564499363875081381150525156943438718378771046620794831690395}{1277151802124546561808795146447800520546816195331709711011070671} a^{2} - \frac{329716749747502983500801994323918702914414217680287757178097584}{1277151802124546561808795146447800520546816195331709711011070671} a + \frac{381465770898857777964261221514754775254567501659492272747747510}{3831455406373639685426385439343401561640448585995129133033212013}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2779783301410 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 22044960 |
| The 261 conjugacy class representatives for t21n144 are not computed |
| Character table for t21n144 is not computed |
Intermediate fields
| 7.3.792873.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | $21$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.9.0.1}{9} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | R | $18{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 37 | Data not computed | ||||||
| 2381 | Data not computed | ||||||
| 232597 | Data not computed | ||||||
| 2799847 | Data not computed | ||||||