Normalized defining polynomial
\( x^{21} - 7 x^{20} + 21 x^{19} - 34 x^{18} + 116 x^{17} + 545 x^{16} - 2200 x^{15} + 3148 x^{14} - 14133 x^{13} - 26711 x^{12} - 65282 x^{11} - 158805 x^{10} + 228083 x^{9} - 139668 x^{8} - 1168123 x^{7} + 426315 x^{6} + 764470 x^{5} - 1534666 x^{4} - 486339 x^{3} + 614026 x^{2} - 225533 x + 15197 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-48958786234221774012025092444897160075327=-\,7^{17}\cdot 29^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{43} a^{16} + \frac{8}{43} a^{15} + \frac{6}{43} a^{13} + \frac{15}{43} a^{12} - \frac{12}{43} a^{11} - \frac{1}{43} a^{10} + \frac{8}{43} a^{9} - \frac{3}{43} a^{8} - \frac{3}{43} a^{7} + \frac{15}{43} a^{6} + \frac{2}{43} a^{5} + \frac{2}{43} a^{4} + \frac{17}{43} a^{3} - \frac{19}{43} a^{2} + \frac{17}{43} a - \frac{10}{43}$, $\frac{1}{43} a^{17} - \frac{21}{43} a^{15} + \frac{6}{43} a^{14} + \frac{10}{43} a^{13} - \frac{3}{43} a^{12} + \frac{9}{43} a^{11} + \frac{16}{43} a^{10} + \frac{19}{43} a^{9} + \frac{21}{43} a^{8} - \frac{4}{43} a^{7} + \frac{11}{43} a^{6} - \frac{14}{43} a^{5} + \frac{1}{43} a^{4} + \frac{17}{43} a^{3} - \frac{3}{43} a^{2} - \frac{17}{43} a - \frac{6}{43}$, $\frac{1}{16211} a^{18} - \frac{147}{16211} a^{17} + \frac{109}{16211} a^{16} - \frac{294}{1247} a^{15} - \frac{4011}{16211} a^{14} + \frac{3048}{16211} a^{13} - \frac{7705}{16211} a^{12} - \frac{5361}{16211} a^{11} - \frac{8010}{16211} a^{10} + \frac{160}{16211} a^{9} + \frac{2453}{16211} a^{8} - \frac{1812}{16211} a^{7} + \frac{3716}{16211} a^{6} - \frac{6754}{16211} a^{5} - \frac{6406}{16211} a^{4} - \frac{8075}{16211} a^{3} - \frac{3336}{16211} a^{2} + \frac{7842}{16211} a + \frac{292}{1247}$, $\frac{1}{16211} a^{19} - \frac{11}{16211} a^{17} + \frac{137}{16211} a^{16} + \frac{4933}{16211} a^{15} - \frac{3727}{16211} a^{14} - \frac{739}{16211} a^{13} - \frac{5488}{16211} a^{12} - \frac{4000}{16211} a^{11} + \frac{5339}{16211} a^{10} - \frac{2679}{16211} a^{9} + \frac{76}{377} a^{8} - \frac{4403}{16211} a^{7} - \frac{4890}{16211} a^{6} + \frac{5084}{16211} a^{5} + \frac{4053}{16211} a^{4} + \frac{7368}{16211} a^{3} + \frac{6419}{16211} a^{2} + \frac{2573}{16211} a - \frac{112}{1247}$, $\frac{1}{2682281336307046371117292052866419848935586149527745927057} a^{20} - \frac{39674220172996466345106966863208389147011460109963470}{2682281336307046371117292052866419848935586149527745927057} a^{19} - \frac{80746899780626243980437092638920860484720375498766477}{2682281336307046371117292052866419848935586149527745927057} a^{18} - \frac{1244766220169038840650692183109900065585106887303137450}{2682281336307046371117292052866419848935586149527745927057} a^{17} + \frac{29253935488159438248799255495524450768746993924531543854}{2682281336307046371117292052866419848935586149527745927057} a^{16} - \frac{1219158506240717852454838353149295045118762809565424680387}{2682281336307046371117292052866419848935586149527745927057} a^{15} + \frac{844202281967213283680567468354079751572413379052467247036}{2682281336307046371117292052866419848935586149527745927057} a^{14} - \frac{44778331570954259948242241580080248556679058066478234136}{206329333562080490085945542528186142225814319194441994389} a^{13} - \frac{384005030891568436117602796912060601320366306640760009036}{2682281336307046371117292052866419848935586149527745927057} a^{12} + \frac{143294366815656543712066656287861777603371710575756249140}{2682281336307046371117292052866419848935586149527745927057} a^{11} - \frac{859454141618027114979983659304880285896595169924925188985}{2682281336307046371117292052866419848935586149527745927057} a^{10} + \frac{796151059363926656800664690733836558962204360893468119523}{2682281336307046371117292052866419848935586149527745927057} a^{9} - \frac{187261937839232793885657866590562815983365335834120669816}{2682281336307046371117292052866419848935586149527745927057} a^{8} - \frac{766365756275636633755729184181069310348810498232012514893}{2682281336307046371117292052866419848935586149527745927057} a^{7} + \frac{958894818691416028702864634116546946736526055886852304667}{2682281336307046371117292052866419848935586149527745927057} a^{6} - \frac{886619650370934255768171708443929556061215701628564001638}{2682281336307046371117292052866419848935586149527745927057} a^{5} - \frac{857681136825798548010082982011745135286222847006353715859}{2682281336307046371117292052866419848935586149527745927057} a^{4} - \frac{913816312634077769244637213571847210831179901067659978902}{2682281336307046371117292052866419848935586149527745927057} a^{3} - \frac{395765717918982717784363925974714313093303772684778450134}{2682281336307046371117292052866419848935586149527745927057} a^{2} + \frac{1124416419045466823667031598905463676637173029142088645500}{2682281336307046371117292052866419848935586149527745927057} a - \frac{40607562087130944406733873311984931304031418065930288476}{206329333562080490085945542528186142225814319194441994389}$
Class group and class number
$C_{7}\times C_{7}$, which has order $49$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42748360893.35298 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times D_7$ (as 21T3):
| A solvable group of order 42 |
| The 15 conjugacy class representatives for $C_3\times D_7$ |
| Character table for $C_3\times D_7$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.1.204024399103.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | $21$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $21$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{21}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $29$ | 29.7.6.3 | $x^{7} + 928$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.3 | $x^{7} + 928$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.3 | $x^{7} + 928$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |