Normalized defining polynomial
\( x^{21} - 7 x^{20} + 21 x^{19} - 34 x^{18} + 29 x^{17} + 52 x^{16} - 373 x^{15} + 248 x^{14} - 3577 x^{13} + 42918 x^{12} - 170639 x^{11} + 225822 x^{10} + 43556 x^{9} + 105237 x^{8} - 3230632 x^{7} + 5161290 x^{6} + 1287601 x^{5} + 2320101 x^{4} - 14827477 x^{3} + 4310250 x^{2} + 1634962 x + 569387 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-48958786234221774012025092444897160075327=-\,7^{17}\cdot 29^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{16} a^{16} - \frac{1}{16} a^{15} + \frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{5}{16} a^{6} + \frac{5}{16} a^{5} - \frac{1}{16} a^{4} - \frac{1}{2} a^{3} + \frac{7}{16} a + \frac{5}{16}$, $\frac{1}{16} a^{17} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} + \frac{3}{16} a^{7} + \frac{1}{4} a^{5} + \frac{7}{16} a^{4} - \frac{1}{2} a^{3} + \frac{7}{16} a^{2} - \frac{1}{4} a - \frac{3}{16}$, $\frac{1}{1392} a^{18} + \frac{7}{348} a^{17} + \frac{2}{87} a^{16} + \frac{1}{348} a^{15} + \frac{19}{696} a^{14} + \frac{41}{696} a^{13} - \frac{73}{1392} a^{12} - \frac{5}{48} a^{11} + \frac{43}{1392} a^{10} - \frac{53}{348} a^{9} + \frac{239}{1392} a^{8} - \frac{1}{6} a^{7} + \frac{1}{87} a^{6} + \frac{583}{1392} a^{5} + \frac{9}{29} a^{4} - \frac{665}{1392} a^{3} + \frac{10}{87} a^{2} - \frac{379}{1392} a - \frac{17}{87}$, $\frac{1}{5568} a^{19} - \frac{1}{5568} a^{18} + \frac{15}{928} a^{17} - \frac{47}{1856} a^{16} + \frac{3}{1856} a^{15} + \frac{37}{1856} a^{14} - \frac{23}{464} a^{13} + \frac{5}{192} a^{12} - \frac{121}{1856} a^{11} + \frac{1151}{5568} a^{10} - \frac{23}{928} a^{9} + \frac{35}{192} a^{8} + \frac{5}{58} a^{7} - \frac{941}{2784} a^{6} + \frac{257}{696} a^{5} - \frac{67}{174} a^{4} + \frac{1001}{5568} a^{3} + \frac{241}{1856} a^{2} + \frac{161}{464} a - \frac{61}{192}$, $\frac{1}{6043208541674794207816680097453940316162807123120463721862145536} a^{20} - \frac{2426706923062695401090217364713303917656978599307278541105}{503600711806232850651390008121161693013567260260038643488512128} a^{19} + \frac{127797649346013882029795299159943996331492589448521715477371}{2014402847224931402605560032484646772054269041040154573954048512} a^{18} - \frac{164561231335732510059709609427508363767897274835785475553398391}{6043208541674794207816680097453940316162807123120463721862145536} a^{17} + \frac{8463394740474281816974086977747181232914550471610241983698829}{377700533854674637988542506090871269760175445195028982616384096} a^{16} + \frac{6764534421307087575609802622254221191889607746807230945792137}{1510802135418698551954170024363485079040701780780115930465536384} a^{15} + \frac{1052503333952556417989994664923676659862352472257009967455611}{11338102329596236787648555529932345808935848261014003230510592} a^{14} - \frac{722735824570875890792469261684300501713562810897364880374059835}{6043208541674794207816680097453940316162807123120463721862145536} a^{13} + \frac{120896341194537219114642688185615040390057619352849689541623533}{1007201423612465701302780016242323386027134520520077286977024256} a^{12} - \frac{12134262965316319231474644362603311498989155301497479600642951}{188850266927337318994271253045435634880087722597514491308192048} a^{11} - \frac{332378130007159836825234400183748895854021542553291413270283077}{2014402847224931402605560032484646772054269041040154573954048512} a^{10} + \frac{101214370263466164653690379879005724678697102032299909471228045}{464862195513445708293590776727226178166369778701574132450934272} a^{9} + \frac{53953249116629819775699655181862473648674262909909111644115549}{2014402847224931402605560032484646772054269041040154573954048512} a^{8} + \frac{739567722077513043514038288074291070616904031116422506492814625}{3021604270837397103908340048726970158081403561560231860931072768} a^{7} + \frac{334614174394060662208893420850507911636594076042513588523432567}{3021604270837397103908340048726970158081403561560231860931072768} a^{6} + \frac{195210961622644356206889722601494730674903218503179634690537403}{503600711806232850651390008121161693013567260260038643488512128} a^{5} - \frac{983479142183328896723950165606757161179039974065543411342816321}{2014402847224931402605560032484646772054269041040154573954048512} a^{4} - \frac{127995142364284854392684879052587278280589063447405767148235585}{503600711806232850651390008121161693013567260260038643488512128} a^{3} + \frac{1189176411615846044097342386554806249330565766703182272835244487}{6043208541674794207816680097453940316162807123120463721862145536} a^{2} + \frac{647507206202097950372243489997810112512627549773495304420101165}{2014402847224931402605560032484646772054269041040154573954048512} a + \frac{25208522556169884697397696782625070589768982377120960033599947}{464862195513445708293590776727226178166369778701574132450934272}$
Class group and class number
$C_{7}\times C_{7}$, which has order $49$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 72630093220.36017 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), Deg 7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 7 sibling: | data not computed |
| Degree 14 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $29$ | 29.7.6.3 | $x^{7} + 928$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.3 | $x^{7} + 928$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.3 | $x^{7} + 928$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |