Properties

Label 21.3.489...327.1
Degree $21$
Signature $[3, 9]$
Discriminant $-4.896\times 10^{40}$
Root discriminant \(86.62\)
Ramified primes $7,29$
Class number $49$ (GRH)
Class group [7, 7] (GRH)
Galois group $F_7$ (as 21T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 29*x^17 + 52*x^16 - 373*x^15 + 248*x^14 - 3577*x^13 + 42918*x^12 - 170639*x^11 + 225822*x^10 + 43556*x^9 + 105237*x^8 - 3230632*x^7 + 5161290*x^6 + 1287601*x^5 + 2320101*x^4 - 14827477*x^3 + 4310250*x^2 + 1634962*x + 569387)
 
Copy content gp:K = bnfinit(y^21 - 7*y^20 + 21*y^19 - 34*y^18 + 29*y^17 + 52*y^16 - 373*y^15 + 248*y^14 - 3577*y^13 + 42918*y^12 - 170639*y^11 + 225822*y^10 + 43556*y^9 + 105237*y^8 - 3230632*y^7 + 5161290*y^6 + 1287601*y^5 + 2320101*y^4 - 14827477*y^3 + 4310250*y^2 + 1634962*y + 569387, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 29*x^17 + 52*x^16 - 373*x^15 + 248*x^14 - 3577*x^13 + 42918*x^12 - 170639*x^11 + 225822*x^10 + 43556*x^9 + 105237*x^8 - 3230632*x^7 + 5161290*x^6 + 1287601*x^5 + 2320101*x^4 - 14827477*x^3 + 4310250*x^2 + 1634962*x + 569387);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 29*x^17 + 52*x^16 - 373*x^15 + 248*x^14 - 3577*x^13 + 42918*x^12 - 170639*x^11 + 225822*x^10 + 43556*x^9 + 105237*x^8 - 3230632*x^7 + 5161290*x^6 + 1287601*x^5 + 2320101*x^4 - 14827477*x^3 + 4310250*x^2 + 1634962*x + 569387)
 

\( x^{21} - 7 x^{20} + 21 x^{19} - 34 x^{18} + 29 x^{17} + 52 x^{16} - 373 x^{15} + 248 x^{14} + \cdots + 569387 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $21$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[3, 9]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-48958786234221774012025092444897160075327\) \(\medspace = -\,7^{17}\cdot 29^{18}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(86.62\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $7^{5/6}29^{6/7}\approx 90.72612557219027$
Ramified primes:   \(7\), \(29\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{-7}) \)
$\Aut(K/\Q)$:   $C_3$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}+\frac{1}{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}+\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{4}a$, $\frac{1}{4}a^{14}-\frac{1}{4}$, $\frac{1}{8}a^{15}-\frac{1}{8}a^{13}-\frac{1}{8}a^{11}-\frac{1}{8}a^{8}+\frac{1}{8}a^{7}-\frac{1}{8}a^{6}-\frac{1}{2}a^{5}+\frac{1}{8}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{8}$, $\frac{1}{16}a^{16}-\frac{1}{16}a^{15}+\frac{1}{16}a^{14}-\frac{1}{16}a^{13}-\frac{1}{16}a^{12}-\frac{1}{16}a^{11}-\frac{1}{16}a^{9}-\frac{5}{16}a^{6}+\frac{5}{16}a^{5}-\frac{1}{16}a^{4}-\frac{1}{2}a^{3}+\frac{7}{16}a+\frac{5}{16}$, $\frac{1}{16}a^{17}-\frac{1}{8}a^{13}-\frac{1}{8}a^{12}-\frac{1}{16}a^{11}-\frac{1}{16}a^{10}-\frac{1}{16}a^{9}+\frac{3}{16}a^{7}+\frac{1}{4}a^{5}+\frac{7}{16}a^{4}-\frac{1}{2}a^{3}+\frac{7}{16}a^{2}-\frac{1}{4}a-\frac{3}{16}$, $\frac{1}{1392}a^{18}+\frac{7}{348}a^{17}+\frac{2}{87}a^{16}+\frac{1}{348}a^{15}+\frac{19}{696}a^{14}+\frac{41}{696}a^{13}-\frac{73}{1392}a^{12}-\frac{5}{48}a^{11}+\frac{43}{1392}a^{10}-\frac{53}{348}a^{9}+\frac{239}{1392}a^{8}-\frac{1}{6}a^{7}+\frac{1}{87}a^{6}+\frac{583}{1392}a^{5}+\frac{9}{29}a^{4}-\frac{665}{1392}a^{3}+\frac{10}{87}a^{2}-\frac{379}{1392}a-\frac{17}{87}$, $\frac{1}{5568}a^{19}-\frac{1}{5568}a^{18}+\frac{15}{928}a^{17}-\frac{47}{1856}a^{16}+\frac{3}{1856}a^{15}+\frac{37}{1856}a^{14}-\frac{23}{464}a^{13}+\frac{5}{192}a^{12}-\frac{121}{1856}a^{11}+\frac{1151}{5568}a^{10}-\frac{23}{928}a^{9}+\frac{35}{192}a^{8}+\frac{5}{58}a^{7}-\frac{941}{2784}a^{6}+\frac{257}{696}a^{5}-\frac{67}{174}a^{4}+\frac{1001}{5568}a^{3}+\frac{241}{1856}a^{2}+\frac{161}{464}a-\frac{61}{192}$, $\frac{1}{60\cdots 36}a^{20}-\frac{24\cdots 05}{50\cdots 28}a^{19}+\frac{12\cdots 71}{20\cdots 12}a^{18}-\frac{16\cdots 91}{60\cdots 36}a^{17}+\frac{84\cdots 29}{37\cdots 96}a^{16}+\frac{67\cdots 37}{15\cdots 84}a^{15}+\frac{10\cdots 11}{11\cdots 92}a^{14}-\frac{72\cdots 35}{60\cdots 36}a^{13}+\frac{12\cdots 33}{10\cdots 56}a^{12}-\frac{12\cdots 51}{18\cdots 48}a^{11}-\frac{33\cdots 77}{20\cdots 12}a^{10}+\frac{10\cdots 45}{46\cdots 72}a^{9}+\frac{53\cdots 49}{20\cdots 12}a^{8}+\frac{73\cdots 25}{30\cdots 68}a^{7}+\frac{33\cdots 67}{30\cdots 68}a^{6}+\frac{19\cdots 03}{50\cdots 28}a^{5}-\frac{98\cdots 21}{20\cdots 12}a^{4}-\frac{12\cdots 85}{50\cdots 28}a^{3}+\frac{11\cdots 87}{60\cdots 36}a^{2}+\frac{64\cdots 65}{20\cdots 12}a+\frac{25\cdots 47}{46\cdots 72}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  $C_{7}\times C_{7}$, which has order $49$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{7}\times C_{7}$, which has order $49$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $11$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{16\cdots 21}{39\cdots 64}a^{20}-\frac{26\cdots 63}{98\cdots 16}a^{19}+\frac{28\cdots 05}{39\cdots 64}a^{18}-\frac{40\cdots 83}{39\cdots 64}a^{17}+\frac{16\cdots 11}{24\cdots 04}a^{16}+\frac{24\cdots 53}{98\cdots 16}a^{15}-\frac{56\cdots 73}{39\cdots 64}a^{14}+\frac{14\cdots 33}{39\cdots 64}a^{13}-\frac{29\cdots 17}{19\cdots 32}a^{12}+\frac{21\cdots 47}{12\cdots 52}a^{11}-\frac{24\cdots 51}{39\cdots 64}a^{10}+\frac{24\cdots 77}{39\cdots 64}a^{9}+\frac{19\cdots 31}{39\cdots 64}a^{8}+\frac{13\cdots 81}{19\cdots 32}a^{7}-\frac{25\cdots 93}{19\cdots 32}a^{6}+\frac{13\cdots 29}{98\cdots 16}a^{5}+\frac{54\cdots 29}{39\cdots 64}a^{4}+\frac{16\cdots 81}{98\cdots 16}a^{3}-\frac{20\cdots 97}{39\cdots 64}a^{2}-\frac{64\cdots 85}{39\cdots 64}a+\frac{34\cdots 75}{39\cdots 64}$, $\frac{16\cdots 21}{39\cdots 64}a^{20}-\frac{26\cdots 63}{98\cdots 16}a^{19}+\frac{28\cdots 05}{39\cdots 64}a^{18}-\frac{40\cdots 83}{39\cdots 64}a^{17}+\frac{16\cdots 11}{24\cdots 04}a^{16}+\frac{24\cdots 53}{98\cdots 16}a^{15}-\frac{56\cdots 73}{39\cdots 64}a^{14}+\frac{14\cdots 33}{39\cdots 64}a^{13}-\frac{29\cdots 17}{19\cdots 32}a^{12}+\frac{21\cdots 47}{12\cdots 52}a^{11}-\frac{24\cdots 51}{39\cdots 64}a^{10}+\frac{24\cdots 77}{39\cdots 64}a^{9}+\frac{19\cdots 31}{39\cdots 64}a^{8}+\frac{13\cdots 81}{19\cdots 32}a^{7}-\frac{25\cdots 93}{19\cdots 32}a^{6}+\frac{13\cdots 29}{98\cdots 16}a^{5}+\frac{54\cdots 29}{39\cdots 64}a^{4}+\frac{16\cdots 81}{98\cdots 16}a^{3}-\frac{20\cdots 97}{39\cdots 64}a^{2}-\frac{64\cdots 85}{39\cdots 64}a+\frac{73\cdots 39}{39\cdots 64}$, $\frac{39\cdots 03}{14\cdots 96}a^{20}-\frac{16\cdots 05}{12\cdots 08}a^{19}+\frac{40\cdots 75}{14\cdots 96}a^{18}-\frac{11\cdots 23}{49\cdots 32}a^{17}-\frac{17\cdots 91}{61\cdots 04}a^{16}+\frac{21\cdots 55}{12\cdots 08}a^{15}-\frac{25\cdots 81}{37\cdots 64}a^{14}-\frac{12\cdots 33}{14\cdots 96}a^{13}-\frac{77\cdots 87}{73\cdots 48}a^{12}+\frac{17\cdots 91}{18\cdots 12}a^{11}-\frac{38\cdots 89}{14\cdots 96}a^{10}-\frac{65\cdots 49}{11\cdots 92}a^{9}+\frac{61\cdots 25}{14\cdots 96}a^{8}+\frac{69\cdots 15}{73\cdots 48}a^{7}-\frac{17\cdots 81}{24\cdots 16}a^{6}-\frac{27\cdots 97}{36\cdots 24}a^{5}+\frac{15\cdots 37}{16\cdots 08}a^{4}+\frac{77\cdots 17}{36\cdots 24}a^{3}-\frac{17\cdots 05}{49\cdots 32}a^{2}-\frac{13\cdots 07}{14\cdots 96}a-\frac{16\cdots 15}{11\cdots 92}$, $\frac{18\cdots 57}{62\cdots 16}a^{20}-\frac{48\cdots 19}{25\cdots 64}a^{19}+\frac{13\cdots 27}{25\cdots 64}a^{18}-\frac{35\cdots 97}{43\cdots 08}a^{17}+\frac{17\cdots 23}{25\cdots 64}a^{16}+\frac{34\cdots 09}{25\cdots 64}a^{15}-\frac{48\cdots 57}{47\cdots 08}a^{14}+\frac{23\cdots 71}{62\cdots 16}a^{13}-\frac{25\cdots 99}{25\cdots 64}a^{12}+\frac{30\cdots 65}{25\cdots 64}a^{11}-\frac{11\cdots 97}{25\cdots 64}a^{10}+\frac{48\cdots 39}{96\cdots 64}a^{9}+\frac{53\cdots 91}{25\cdots 64}a^{8}+\frac{19\cdots 19}{31\cdots 08}a^{7}-\frac{11\cdots 75}{12\cdots 32}a^{6}+\frac{69\cdots 15}{62\cdots 16}a^{5}+\frac{12\cdots 99}{31\cdots 08}a^{4}+\frac{20\cdots 41}{25\cdots 64}a^{3}-\frac{10\cdots 33}{25\cdots 64}a^{2}+\frac{39\cdots 01}{62\cdots 16}a-\frac{34\cdots 77}{19\cdots 28}$, $\frac{36\cdots 95}{20\cdots 12}a^{20}+\frac{65\cdots 99}{15\cdots 84}a^{19}-\frac{48\cdots 83}{60\cdots 36}a^{18}+\frac{57\cdots 55}{20\cdots 12}a^{17}-\frac{10\cdots 01}{25\cdots 64}a^{16}+\frac{81\cdots 73}{50\cdots 28}a^{15}+\frac{49\cdots 49}{37\cdots 64}a^{14}-\frac{15\cdots 17}{20\cdots 12}a^{13}-\frac{62\cdots 97}{30\cdots 68}a^{12}+\frac{59\cdots 63}{25\cdots 64}a^{11}+\frac{24\cdots 09}{60\cdots 36}a^{10}-\frac{37\cdots 89}{15\cdots 24}a^{9}+\frac{20\cdots 91}{60\cdots 36}a^{8}+\frac{37\cdots 91}{10\cdots 56}a^{7}-\frac{37\cdots 01}{30\cdots 68}a^{6}-\frac{53\cdots 91}{15\cdots 84}a^{5}+\frac{54\cdots 17}{60\cdots 36}a^{4}+\frac{51\cdots 39}{15\cdots 84}a^{3}-\frac{72\cdots 47}{69\cdots 28}a^{2}-\frac{60\cdots 59}{20\cdots 12}a-\frac{25\cdots 73}{46\cdots 72}$, $\frac{17\cdots 27}{25\cdots 64}a^{20}-\frac{16\cdots 37}{25\cdots 64}a^{19}+\frac{12\cdots 15}{47\cdots 12}a^{18}-\frac{43\cdots 69}{75\cdots 92}a^{17}+\frac{51\cdots 15}{75\cdots 92}a^{16}+\frac{28\cdots 29}{75\cdots 92}a^{15}-\frac{34\cdots 65}{70\cdots 12}a^{14}+\frac{73\cdots 53}{75\cdots 92}a^{13}-\frac{23\cdots 77}{75\cdots 92}a^{12}+\frac{26\cdots 05}{75\cdots 92}a^{11}-\frac{42\cdots 61}{23\cdots 06}a^{10}+\frac{24\cdots 55}{58\cdots 84}a^{9}-\frac{12\cdots 21}{37\cdots 96}a^{8}-\frac{10\cdots 39}{37\cdots 96}a^{7}-\frac{23\cdots 11}{18\cdots 48}a^{6}+\frac{13\cdots 01}{18\cdots 48}a^{5}-\frac{22\cdots 01}{25\cdots 64}a^{4}+\frac{14\cdots 41}{75\cdots 92}a^{3}+\frac{26\cdots 29}{37\cdots 96}a^{2}+\frac{68\cdots 11}{75\cdots 92}a-\frac{69\cdots 89}{29\cdots 92}$, $\frac{84\cdots 73}{20\cdots 12}a^{20}-\frac{14\cdots 41}{50\cdots 28}a^{19}+\frac{16\cdots 41}{20\cdots 12}a^{18}-\frac{24\cdots 71}{20\cdots 12}a^{17}+\frac{22\cdots 03}{25\cdots 64}a^{16}+\frac{12\cdots 71}{50\cdots 28}a^{15}-\frac{58\cdots 25}{37\cdots 64}a^{14}+\frac{13\cdots 89}{20\cdots 12}a^{13}-\frac{15\cdots 57}{10\cdots 56}a^{12}+\frac{44\cdots 07}{25\cdots 64}a^{11}-\frac{13\cdots 95}{20\cdots 12}a^{10}+\frac{12\cdots 37}{15\cdots 24}a^{9}+\frac{73\cdots 07}{20\cdots 12}a^{8}+\frac{47\cdots 97}{10\cdots 56}a^{7}-\frac{13\cdots 13}{10\cdots 56}a^{6}+\frac{89\cdots 65}{50\cdots 28}a^{5}+\frac{18\cdots 69}{20\cdots 12}a^{4}+\frac{64\cdots 27}{50\cdots 28}a^{3}-\frac{10\cdots 37}{20\cdots 12}a^{2}+\frac{53\cdots 43}{20\cdots 12}a-\frac{29\cdots 93}{15\cdots 24}$, $\frac{61\cdots 93}{73\cdots 48}a^{20}-\frac{10\cdots 47}{18\cdots 12}a^{19}+\frac{12\cdots 05}{73\cdots 48}a^{18}-\frac{19\cdots 71}{73\cdots 48}a^{17}+\frac{11\cdots 85}{57\cdots 66}a^{16}+\frac{86\cdots 61}{18\cdots 12}a^{15}-\frac{17\cdots 25}{56\cdots 96}a^{14}+\frac{11\cdots 13}{73\cdots 48}a^{13}-\frac{11\cdots 17}{36\cdots 24}a^{12}+\frac{81\cdots 97}{23\cdots 64}a^{11}-\frac{10\cdots 79}{73\cdots 48}a^{10}+\frac{95\cdots 17}{56\cdots 96}a^{9}+\frac{42\cdots 91}{73\cdots 48}a^{8}+\frac{12\cdots 81}{12\cdots 56}a^{7}-\frac{98\cdots 49}{36\cdots 24}a^{6}+\frac{71\cdots 09}{18\cdots 12}a^{5}+\frac{11\cdots 81}{73\cdots 48}a^{4}+\frac{38\cdots 17}{18\cdots 12}a^{3}-\frac{84\cdots 73}{73\cdots 48}a^{2}+\frac{82\cdots 29}{24\cdots 16}a+\frac{11\cdots 87}{56\cdots 96}$, $\frac{21\cdots 45}{20\cdots 12}a^{20}-\frac{34\cdots 61}{50\cdots 28}a^{19}+\frac{10\cdots 23}{60\cdots 36}a^{18}-\frac{14\cdots 17}{60\cdots 36}a^{17}+\frac{11\cdots 89}{75\cdots 92}a^{16}+\frac{98\cdots 45}{15\cdots 84}a^{15}-\frac{40\cdots 11}{11\cdots 92}a^{14}+\frac{17\cdots 35}{60\cdots 36}a^{13}-\frac{11\cdots 03}{30\cdots 68}a^{12}+\frac{32\cdots 25}{75\cdots 92}a^{11}-\frac{92\cdots 05}{60\cdots 36}a^{10}+\frac{63\cdots 39}{46\cdots 72}a^{9}+\frac{84\cdots 13}{60\cdots 36}a^{8}+\frac{63\cdots 75}{30\cdots 68}a^{7}-\frac{10\cdots 31}{30\cdots 68}a^{6}+\frac{49\cdots 15}{15\cdots 84}a^{5}+\frac{73\cdots 41}{20\cdots 12}a^{4}+\frac{75\cdots 01}{15\cdots 84}a^{3}-\frac{76\cdots 15}{60\cdots 36}a^{2}-\frac{23\cdots 07}{60\cdots 36}a-\frac{42\cdots 27}{46\cdots 72}$, $\frac{18\cdots 07}{10\cdots 56}a^{20}-\frac{70\cdots 17}{62\cdots 16}a^{19}+\frac{30\cdots 95}{10\cdots 56}a^{18}-\frac{46\cdots 69}{10\cdots 56}a^{17}+\frac{85\cdots 79}{25\cdots 64}a^{16}+\frac{39\cdots 59}{31\cdots 08}a^{15}-\frac{12\cdots 99}{18\cdots 32}a^{14}+\frac{13\cdots 83}{10\cdots 56}a^{13}-\frac{36\cdots 77}{50\cdots 28}a^{12}+\frac{18\cdots 09}{25\cdots 64}a^{11}-\frac{25\cdots 17}{10\cdots 56}a^{10}+\frac{20\cdots 43}{77\cdots 12}a^{9}+\frac{82\cdots 29}{10\cdots 56}a^{8}+\frac{10\cdots 63}{50\cdots 28}a^{7}-\frac{23\cdots 15}{50\cdots 28}a^{6}+\frac{11\cdots 07}{25\cdots 64}a^{5}+\frac{27\cdots 15}{10\cdots 56}a^{4}+\frac{11\cdots 23}{15\cdots 04}a^{3}-\frac{29\cdots 03}{10\cdots 56}a^{2}-\frac{13\cdots 87}{10\cdots 56}a-\frac{30\cdots 23}{77\cdots 12}$, $\frac{27\cdots 61}{10\cdots 56}a^{20}-\frac{10\cdots 93}{75\cdots 92}a^{19}+\frac{97\cdots 39}{30\cdots 68}a^{18}-\frac{36\cdots 19}{10\cdots 56}a^{17}+\frac{94\cdots 71}{62\cdots 16}a^{16}+\frac{42\cdots 21}{25\cdots 64}a^{15}-\frac{13\cdots 57}{18\cdots 32}a^{14}-\frac{58\cdots 47}{10\cdots 56}a^{13}-\frac{16\cdots 59}{15\cdots 84}a^{12}+\frac{30\cdots 27}{31\cdots 08}a^{11}-\frac{88\cdots 97}{30\cdots 68}a^{10}+\frac{82\cdots 65}{77\cdots 12}a^{9}+\frac{93\cdots 41}{30\cdots 68}a^{8}+\frac{41\cdots 25}{50\cdots 28}a^{7}-\frac{11\cdots 19}{15\cdots 84}a^{6}+\frac{11\cdots 51}{75\cdots 92}a^{5}+\frac{20\cdots 23}{30\cdots 68}a^{4}+\frac{13\cdots 47}{75\cdots 92}a^{3}-\frac{83\cdots 73}{10\cdots 56}a^{2}-\frac{29\cdots 97}{10\cdots 56}a-\frac{20\cdots 75}{23\cdots 36}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 72630093220.36017 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{9}\cdot 72630093220.36017 \cdot 49}{2\cdot\sqrt{48958786234221774012025092444897160075327}}\cr\approx \mathstrut & 0.981920137928192 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 29*x^17 + 52*x^16 - 373*x^15 + 248*x^14 - 3577*x^13 + 42918*x^12 - 170639*x^11 + 225822*x^10 + 43556*x^9 + 105237*x^8 - 3230632*x^7 + 5161290*x^6 + 1287601*x^5 + 2320101*x^4 - 14827477*x^3 + 4310250*x^2 + 1634962*x + 569387) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 29*x^17 + 52*x^16 - 373*x^15 + 248*x^14 - 3577*x^13 + 42918*x^12 - 170639*x^11 + 225822*x^10 + 43556*x^9 + 105237*x^8 - 3230632*x^7 + 5161290*x^6 + 1287601*x^5 + 2320101*x^4 - 14827477*x^3 + 4310250*x^2 + 1634962*x + 569387, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 29*x^17 + 52*x^16 - 373*x^15 + 248*x^14 - 3577*x^13 + 42918*x^12 - 170639*x^11 + 225822*x^10 + 43556*x^9 + 105237*x^8 - 3230632*x^7 + 5161290*x^6 + 1287601*x^5 + 2320101*x^4 - 14827477*x^3 + 4310250*x^2 + 1634962*x + 569387); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 29*x^17 + 52*x^16 - 373*x^15 + 248*x^14 - 3577*x^13 + 42918*x^12 - 170639*x^11 + 225822*x^10 + 43556*x^9 + 105237*x^8 - 3230632*x^7 + 5161290*x^6 + 1287601*x^5 + 2320101*x^4 - 14827477*x^3 + 4310250*x^2 + 1634962*x + 569387); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$F_7$ (as 21T4):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 42
The 7 conjugacy class representatives for $F_7$
Character table for $F_7$

Intermediate fields

\(\Q(\zeta_{7})^+\), 7.1.9997195556047.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 42
Degree 7 sibling: 7.1.9997195556047.1
Degree 14 sibling: deg 14
Minimal sibling: 7.1.9997195556047.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.3.0.1}{3} }^{7}$ ${\href{/padicField/3.6.0.1}{6} }^{3}{,}\,{\href{/padicField/3.3.0.1}{3} }$ ${\href{/padicField/5.6.0.1}{6} }^{3}{,}\,{\href{/padicField/5.3.0.1}{3} }$ R ${\href{/padicField/11.3.0.1}{3} }^{7}$ ${\href{/padicField/13.2.0.1}{2} }^{9}{,}\,{\href{/padicField/13.1.0.1}{1} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }^{3}{,}\,{\href{/padicField/17.3.0.1}{3} }$ ${\href{/padicField/19.6.0.1}{6} }^{3}{,}\,{\href{/padicField/19.3.0.1}{3} }$ ${\href{/padicField/23.3.0.1}{3} }^{7}$ R ${\href{/padicField/31.6.0.1}{6} }^{3}{,}\,{\href{/padicField/31.3.0.1}{3} }$ ${\href{/padicField/37.3.0.1}{3} }^{7}$ ${\href{/padicField/41.2.0.1}{2} }^{9}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ ${\href{/padicField/43.7.0.1}{7} }^{3}$ ${\href{/padicField/47.6.0.1}{6} }^{3}{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.3.0.1}{3} }^{7}$ ${\href{/padicField/59.6.0.1}{6} }^{3}{,}\,{\href{/padicField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display 7.1.3.2a1.1$x^{3} + 7$$3$$1$$2$$C_3$$$[\ ]_{3}$$
7.1.6.5a1.1$x^{6} + 7$$6$$1$$5$$C_6$$$[\ ]_{6}$$
7.1.6.5a1.1$x^{6} + 7$$6$$1$$5$$C_6$$$[\ ]_{6}$$
7.1.6.5a1.1$x^{6} + 7$$6$$1$$5$$C_6$$$[\ ]_{6}$$
\(29\) Copy content Toggle raw display 29.1.7.6a1.3$x^{7} + 87$$7$$1$$6$$C_7$$$[\ ]_{7}$$
29.1.7.6a1.3$x^{7} + 87$$7$$1$$6$$C_7$$$[\ ]_{7}$$
29.1.7.6a1.3$x^{7} + 87$$7$$1$$6$$C_7$$$[\ ]_{7}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)