Normalized defining polynomial
\( x^{21} - 63 x^{17} - 252 x^{16} - 189 x^{15} - 1089 x^{14} - 11858 x^{12} - 30807 x^{11} - 87570 x^{10} - 58527 x^{9} + 97020 x^{8} + 658251 x^{7} + 943152 x^{6} + 982989 x^{5} - 874503 x^{4} - 1587250 x^{3} - 1282302 x^{2} + 1545075 x + 2732211 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-44553216873221843443058843338471726567527=-\,3^{48}\cdot 7^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3} a^{19} + \frac{1}{3} a^{10} - \frac{1}{3} a$, $\frac{1}{110226440709177665692630459556041699978154580027652757599476288506577} a^{20} - \frac{2192819233618575181622043200896577685054061685177185659380308163470}{36742146903059221897543486518680566659384860009217585866492096168859} a^{19} - \frac{3092086452912425764618637983903388329222189388314947823770508169929}{12247382301019740632514495506226855553128286669739195288830698722953} a^{18} - \frac{3127740072192531748059482027807974592418940886454026278321308980485}{12247382301019740632514495506226855553128286669739195288830698722953} a^{17} - \frac{4930673984184351836401490705099290426164897283308878853988734947313}{12247382301019740632514495506226855553128286669739195288830698722953} a^{16} - \frac{3924620377241770869341123442240447597131244566152157572251305294483}{12247382301019740632514495506226855553128286669739195288830698722953} a^{15} - \frac{4348125802948209776509585973174401927029467926682698043197614397727}{12247382301019740632514495506226855553128286669739195288830698722953} a^{14} + \frac{377519879060814255492806287994233307144530960341897122738264470631}{12247382301019740632514495506226855553128286669739195288830698722953} a^{13} - \frac{1432286061448067028689417723995156344914774291397873783452735346177}{12247382301019740632514495506226855553128286669739195288830698722953} a^{12} + \frac{49012942143538691456459746373809329708642809391020206708085799351106}{110226440709177665692630459556041699978154580027652757599476288506577} a^{11} - \frac{8386259088797973194347144618376217784069133955279023307647424163783}{36742146903059221897543486518680566659384860009217585866492096168859} a^{10} + \frac{2585998446656767641749545590951057908320992370373347256168926525115}{12247382301019740632514495506226855553128286669739195288830698722953} a^{9} - \frac{6060447465324705697457727958814406318792547961172870025717331093020}{12247382301019740632514495506226855553128286669739195288830698722953} a^{8} - \frac{4914667650170488601462469830761819126218324493397223670852856498218}{12247382301019740632514495506226855553128286669739195288830698722953} a^{7} - \frac{4297033543084695475375134958817461218712018956197423275340542232496}{12247382301019740632514495506226855553128286669739195288830698722953} a^{6} + \frac{16781591621388004758126919807419703839063053432578575047307691187345}{36742146903059221897543486518680566659384860009217585866492096168859} a^{5} - \frac{4617143726068177436792405850554087536513119935848782849086724089245}{12247382301019740632514495506226855553128286669739195288830698722953} a^{4} - \frac{1704744348588195047560524255586089445999052730264920803136885688110}{12247382301019740632514495506226855553128286669739195288830698722953} a^{3} - \frac{31145429290161642095619343395081803838700810627727256066812286136690}{110226440709177665692630459556041699978154580027652757599476288506577} a^{2} + \frac{1407438949863783984295506173001699233996915442427600400897880586702}{36742146903059221897543486518680566659384860009217585866492096168859} a + \frac{1175751505589521943042986055834063616849699231620586869044078555050}{12247382301019740632514495506226855553128286669739195288830698722953}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1324635290840 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6174 |
| The 37 conjugacy class representatives for t21n42 |
| Character table for t21n42 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | R | $18{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | $18{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | $18{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||