Normalized defining polynomial
\( x^{21} - 42 x^{18} + 63 x^{17} + 252 x^{16} - 1008 x^{15} + 1224 x^{14} + 3528 x^{13} + 10192 x^{12} + 11151 x^{11} - 33516 x^{10} + 80388 x^{9} - 14994 x^{8} - 396243 x^{7} + 7644 x^{6} + 31752 x^{5} + 563472 x^{4} + 562625 x^{3} - 283374 x^{2} + 72576 x - 443448 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-44553216873221843443058843338471726567527=-\,3^{48}\cdot 7^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{6} a$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{1}{6} a^{5} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{2} a^{9} + \frac{1}{3} a^{7} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a$, $\frac{1}{6} a^{15} + \frac{1}{6} a^{10} - \frac{1}{2} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{2} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{16} + \frac{1}{6} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{17} + \frac{1}{6} a^{10} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{2} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{18} - \frac{1}{6} a^{10} + \frac{1}{3} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{3} a^{5} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{19} + \frac{1}{6} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{6} a$, $\frac{1}{46064693399184196907334709806843628820117594765413400358151572} a^{20} - \frac{178313205830635105307737964309475323745610547980408434878395}{2559149633288010939296372767046868267784310820300744464341754} a^{19} + \frac{389261167835450818542520193976052020605141156343824850814691}{7677448899864032817889118301140604803352932460902233393025262} a^{18} - \frac{214104838173815056532537236383093312148169353212653135762828}{3838724449932016408944559150570302401676466230451116696512631} a^{17} - \frac{656998781888910356931731466510443735591138871063066954615749}{15354897799728065635778236602281209606705864921804466786050524} a^{16} + \frac{75704784354163121592292347696475333288843660711517073945127}{2559149633288010939296372767046868267784310820300744464341754} a^{15} + \frac{501831617203508407172799396185807968776541706050664026192115}{7677448899864032817889118301140604803352932460902233393025262} a^{14} + \frac{263995353036476337756553747975580946298542313704265842210691}{7677448899864032817889118301140604803352932460902233393025262} a^{13} - \frac{109237996657529938676966566612065370390544215904634672907983}{2559149633288010939296372767046868267784310820300744464341754} a^{12} + \frac{129872819247515387956392713251866003802958999001063774143992}{11516173349796049226833677451710907205029398691353350089537893} a^{11} + \frac{495316443507407410859525552086872417744217308364322474602301}{5118299266576021878592745534093736535568621640601488928683508} a^{10} + \frac{3284051895892647559789353965476458493038589381529229738934529}{7677448899864032817889118301140604803352932460902233393025262} a^{9} + \frac{1779441449733446903021182177784640267539815686695321314252303}{7677448899864032817889118301140604803352932460902233393025262} a^{8} - \frac{3809896898708817797051199480496700167381357978015231368550301}{7677448899864032817889118301140604803352932460902233393025262} a^{7} + \frac{6668957153092082583492623791624497044661892321244267630229335}{15354897799728065635778236602281209606705864921804466786050524} a^{6} + \frac{1221470529346440255298465100797495614079047980210385235693739}{2559149633288010939296372767046868267784310820300744464341754} a^{5} - \frac{222811924687406484569725686472917956941106295198657052100057}{2559149633288010939296372767046868267784310820300744464341754} a^{4} + \frac{409944231518784078870308784718707495314311763303134967166649}{7677448899864032817889118301140604803352932460902233393025262} a^{3} + \frac{18592331727863972212822668539458162084444940494704797600453321}{46064693399184196907334709806843628820117594765413400358151572} a^{2} + \frac{364390891566517235281228298685658979527864344960325153504498}{1279574816644005469648186383523434133892155410150372232170877} a - \frac{557078635189768187809013901083929869105290235192604468186560}{1279574816644005469648186383523434133892155410150372232170877}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1357254430200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6174 |
| The 37 conjugacy class representatives for t21n42 |
| Character table for t21n42 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | R | $18{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | $18{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | $18{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||