Normalized defining polynomial
\( x^{21} + 21 x^{19} + 189 x^{17} + 952 x^{15} - 74 x^{14} + 2940 x^{13} - 1036 x^{12} + 5733 x^{11} - 5698 x^{10} + 7007 x^{9} - 15540 x^{8} + 6073 x^{7} - 21756 x^{6} + 8554 x^{5} - 14504 x^{4} + 13335 x^{3} - 3626 x^{2} + 6496 x + 1172 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-44004391539662903922836680589982810112=-\,2^{14}\cdot 7^{21}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{3614} a^{14} + \frac{7}{1807} a^{12} + \frac{77}{3614} a^{10} + \frac{105}{1807} a^{8} - \frac{668}{1807} a^{7} + \frac{147}{1807} a^{6} + \frac{745}{1807} a^{5} + \frac{98}{1807} a^{4} - \frac{317}{1807} a^{3} + \frac{49}{3614} a^{2} + \frac{745}{1807} a - \frac{389}{1807}$, $\frac{1}{3614} a^{15} + \frac{7}{1807} a^{13} + \frac{77}{3614} a^{11} + \frac{105}{1807} a^{9} - \frac{668}{1807} a^{8} + \frac{147}{1807} a^{7} + \frac{745}{1807} a^{6} + \frac{98}{1807} a^{5} - \frac{317}{1807} a^{4} + \frac{49}{3614} a^{3} + \frac{745}{1807} a^{2} - \frac{389}{1807} a$, $\frac{1}{3614} a^{16} - \frac{119}{3614} a^{12} - \frac{434}{1807} a^{10} - \frac{668}{1807} a^{9} + \frac{484}{1807} a^{8} - \frac{745}{1807} a^{7} - \frac{153}{1807} a^{6} + \frac{95}{1807} a^{5} + \frac{919}{3614} a^{4} - \frac{238}{1807} a^{3} - \frac{732}{1807} a^{2} + \frac{412}{1807} a + \frac{25}{1807}$, $\frac{1}{3614} a^{17} - \frac{119}{3614} a^{13} - \frac{434}{1807} a^{11} - \frac{668}{1807} a^{10} + \frac{484}{1807} a^{9} - \frac{745}{1807} a^{8} - \frac{153}{1807} a^{7} + \frac{95}{1807} a^{6} + \frac{919}{3614} a^{5} - \frac{238}{1807} a^{4} - \frac{732}{1807} a^{3} + \frac{412}{1807} a^{2} + \frac{25}{1807} a$, $\frac{1}{701116} a^{18} + \frac{75}{701116} a^{17} + \frac{9}{350558} a^{16} - \frac{83}{701116} a^{15} - \frac{59}{701116} a^{14} - \frac{10087}{701116} a^{13} - \frac{1085}{350558} a^{12} - \frac{163177}{701116} a^{11} - \frac{114749}{350558} a^{10} + \frac{88903}{350558} a^{9} + \frac{79494}{175279} a^{8} + \frac{56647}{350558} a^{7} + \frac{13993}{53932} a^{6} + \frac{145001}{701116} a^{5} + \frac{57922}{175279} a^{4} - \frac{98213}{701116} a^{3} - \frac{70097}{175279} a^{2} - \frac{83351}{175279} a - \frac{53006}{175279}$, $\frac{1}{701116} a^{19} + \frac{19}{701116} a^{17} - \frac{75}{701116} a^{16} - \frac{21}{350558} a^{15} - \frac{9}{175279} a^{14} - \frac{2051}{701116} a^{13} - \frac{6405}{53932} a^{12} - \frac{13209}{701116} a^{11} - \frac{84197}{175279} a^{10} + \frac{44456}{175279} a^{9} - \frac{147137}{350558} a^{8} + \frac{332991}{701116} a^{7} + \frac{60566}{175279} a^{6} + \frac{198109}{701116} a^{5} - \frac{194457}{701116} a^{4} - \frac{59433}{701116} a^{3} - \frac{929}{175279} a^{2} + \frac{35909}{175279} a - \frac{6275}{13483}$, $\frac{1}{701116} a^{20} + \frac{1}{13483} a^{17} + \frac{1}{175279} a^{16} - \frac{11}{701116} a^{15} + \frac{10}{175279} a^{14} - \frac{24507}{175279} a^{13} - \frac{4571}{701116} a^{12} - \frac{105297}{701116} a^{11} + \frac{1911}{13483} a^{10} - \frac{52519}{175279} a^{9} + \frac{240651}{701116} a^{8} + \frac{96125}{350558} a^{7} - \frac{100749}{350558} a^{6} - \frac{5930}{13483} a^{5} - \frac{164017}{701116} a^{4} + \frac{116719}{701116} a^{3} - \frac{11147}{26966} a^{2} - \frac{14016}{175279} a - \frac{53096}{175279}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59264279742.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12348 |
| The 45 conjugacy class representatives for t21n55 |
| Character table for t21n55 is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | $21$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 37 | Data not computed | ||||||