Normalized defining polynomial
\( x^{21} - 2171x^{14} + 1219335x^{7} - 62748517 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[3, 9]$ |
| |
| Discriminant: |
\(-42600210199743647641790494093640979042918020345647\)
\(\medspace = -\,7^{35}\cdot 13^{18}\)
|
| |
| Root discriminant: | \(230.84\) |
| |
| Galois root discriminant: | $7^{71/42}13^{6/7}\approx 241.78352389457936$ | ||
| Ramified primes: |
\(7\), \(13\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-7}) \) | ||
| $\Aut(K/\Q)$: | $C_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{26}a^{7}-\frac{1}{2}$, $\frac{1}{26}a^{8}-\frac{1}{2}a$, $\frac{1}{26}a^{9}-\frac{1}{2}a^{2}$, $\frac{1}{26}a^{10}-\frac{1}{2}a^{3}$, $\frac{1}{338}a^{11}-\frac{11}{26}a^{4}$, $\frac{1}{338}a^{12}-\frac{11}{26}a^{5}$, $\frac{1}{338}a^{13}-\frac{11}{26}a^{6}$, $\frac{1}{1467596}a^{14}+\frac{339}{56446}a^{7}-\frac{131}{668}$, $\frac{1}{1467596}a^{15}+\frac{339}{56446}a^{8}-\frac{131}{668}a$, $\frac{1}{19078748}a^{16}+\frac{339}{733798}a^{9}+\frac{1205}{8684}a^{2}$, $\frac{1}{19078748}a^{17}+\frac{339}{733798}a^{10}+\frac{1205}{8684}a^{3}$, $\frac{1}{248023724}a^{18}+\frac{339}{9539374}a^{11}+\frac{44625}{112892}a^{4}$, $\frac{1}{248023724}a^{19}+\frac{339}{9539374}a^{12}+\frac{44625}{112892}a^{5}$, $\frac{1}{3224308412}a^{20}-\frac{56107}{124011862}a^{13}+\frac{27257}{1467596}a^{6}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{3}{733798}a^{14}-\frac{137}{56446}a^{7}-\frac{280}{167}$, $\frac{11}{1467596}a^{14}-\frac{613}{56446}a^{7}+\frac{1231}{668}$, $\frac{12951}{1612154206}a^{20}-\frac{3345}{124011862}a^{19}+\frac{4747}{124011862}a^{18}+\frac{3977}{9539374}a^{17}-\frac{23837}{19078748}a^{16}-\frac{227}{733798}a^{15}+\frac{3097}{733798}a^{14}-\frac{1282434}{62005931}a^{13}+\frac{136080}{4769687}a^{12}+\frac{142159}{9539374}a^{11}-\frac{492793}{733798}a^{10}+\frac{686981}{366899}a^{9}-\frac{17133}{56446}a^{8}-\frac{273137}{56446}a^{7}+\frac{9700835}{733798}a^{6}+\frac{363379}{56446}a^{5}-\frac{1834720}{28223}a^{4}+\frac{471551}{2171}a^{3}-\frac{4152207}{8684}a^{2}+\frac{108806}{167}a-\frac{96558}{167}$, $\frac{58977}{3224308412}a^{20}-\frac{9983}{248023724}a^{19}-\frac{15211}{124011862}a^{18}-\frac{699}{19078748}a^{17}+\frac{605}{4769687}a^{16}+\frac{4925}{1467596}a^{15}-\frac{2173}{1467596}a^{14}-\frac{1814724}{62005931}a^{13}+\frac{341199}{9539374}a^{12}+\frac{1851055}{9539374}a^{11}+\frac{45269}{733798}a^{10}-\frac{280317}{733798}a^{9}-\frac{104170}{28223}a^{8}+\frac{49255}{56446}a^{7}+\frac{17395823}{1467596}a^{6}+\frac{1013853}{112892}a^{5}-\frac{1463005}{28223}a^{4}-\frac{43367}{8684}a^{3}+\frac{661293}{4342}a^{2}+\frac{69251}{668}a-\frac{259757}{668}$, $\frac{1178183}{3224308412}a^{20}+\frac{25256}{62005931}a^{19}-\frac{302775}{248023724}a^{18}-\frac{131693}{19078748}a^{17}-\frac{274167}{19078748}a^{16}+\frac{931}{733798}a^{15}+\frac{11935}{112892}a^{14}-\frac{56623197}{124011862}a^{13}-\frac{4785273}{9539374}a^{12}+\frac{7228251}{4769687}a^{11}+\frac{6326811}{733798}a^{10}+\frac{6602045}{366899}a^{9}-\frac{44777}{28223}a^{8}-\frac{573923}{4342}a^{7}+\frac{35585123}{1467596}a^{6}+\frac{1118869}{56446}a^{5}-\frac{8248441}{112892}a^{4}-\frac{3967237}{8684}a^{3}-\frac{8824425}{8684}a^{2}+\frac{21993}{334}a+\frac{4902383}{668}$, $\frac{15253343}{1612154206}a^{20}+\frac{386135}{62005931}a^{19}-\frac{442875}{9539374}a^{18}-\frac{1904569}{9539374}a^{17}-\frac{1532941}{4769687}a^{16}+\frac{315655}{733798}a^{15}+\frac{1447962}{366899}a^{14}-\frac{631680854}{62005931}a^{13}-\frac{36997371}{4769687}a^{12}+\frac{15566950}{366899}a^{11}+\frac{69691267}{366899}a^{10}+\frac{111853949}{366899}a^{9}-\frac{12345851}{28223}a^{8}-\frac{219527909}{56446}a^{7}+\frac{997024869}{733798}a^{6}+\frac{52561694}{28223}a^{5}+\frac{98131}{334}a^{4}-\frac{24426217}{4342}a^{3}-\frac{17837662}{2171}a^{2}+\frac{12726467}{334}a+\frac{78538437}{334}$, $\frac{11386185}{1612154206}a^{20}-\frac{4677380}{62005931}a^{19}+\frac{4153783}{124011862}a^{18}+\frac{1933895}{9539374}a^{17}-\frac{1405048}{4769687}a^{16}-\frac{177185}{366899}a^{15}+\frac{127163}{112892}a^{14}-\frac{942706526}{62005931}a^{13}+\frac{757095730}{4769687}a^{12}-\frac{346858372}{4769687}a^{11}-\frac{159094713}{366899}a^{10}+\frac{223486312}{366899}a^{9}+\frac{27798339}{28223}a^{8}-\frac{10748575}{4342}a^{7}+\frac{5933249471}{733798}a^{6}-\frac{2314378432}{28223}a^{5}+\frac{2206268609}{56446}a^{4}+\frac{993363519}{4342}a^{3}-\frac{667437310}{2171}a^{2}-\frac{81450170}{167}a+\frac{901978019}{668}$, $\frac{11012992}{806077103}a^{20}+\frac{3093841}{124011862}a^{19}-\frac{18030917}{124011862}a^{18}+\frac{351037}{9539374}a^{17}+\frac{8939855}{9539374}a^{16}-\frac{868175}{733798}a^{15}-\frac{8737945}{1467596}a^{14}-\frac{798663873}{62005931}a^{13}-\frac{141831602}{4769687}a^{12}+\frac{753638800}{4769687}a^{11}-\frac{25443771}{366899}a^{10}-\frac{315310474}{366899}a^{9}+\frac{30394290}{28223}a^{8}+\frac{166180855}{28223}a^{7}+\frac{101853493}{366899}a^{6}+\frac{353080883}{56446}a^{5}-\frac{1249284459}{56446}a^{4}+\frac{142098237}{4342}a^{3}-\frac{15612267}{4342}a^{2}+\frac{3328227}{334}a-\frac{251442859}{668}$, $\frac{199253793997745}{3224308412}a^{20}-\frac{53317207037799}{248023724}a^{19}-\frac{72932952075158}{62005931}a^{18}-\frac{46711085994827}{19078748}a^{17}+\frac{2252093894559}{4769687}a^{16}+\frac{30130796745689}{1467596}a^{15}+\frac{7351964918405}{112892}a^{14}-\frac{37\cdots 59}{62005931}a^{13}+\frac{20\cdots 59}{9539374}a^{12}+\frac{10\cdots 37}{9539374}a^{11}+\frac{878124963305723}{366899}a^{10}-\frac{329298680301219}{733798}a^{9}-\frac{568218771931153}{28223}a^{8}-\frac{275775996448735}{4342}a^{7}+\frac{48\cdots 23}{1467596}a^{6}-\frac{12\cdots 47}{112892}a^{5}-\frac{34\cdots 79}{56446}a^{4}-\frac{11\cdots 25}{8684}a^{3}+\frac{104610387499017}{4342}a^{2}+\frac{723420679915255}{668}a+\frac{22\cdots 37}{668}$, $\frac{621835766824457}{3224308412}a^{20}-\frac{33425468503955}{124011862}a^{19}-\frac{24003079052703}{248023724}a^{18}+\frac{870170914647}{366899}a^{17}-\frac{50102800520937}{4769687}a^{16}+\frac{12300465298566}{366899}a^{15}-\frac{63353575956765}{733798}a^{14}-\frac{29\cdots 61}{124011862}a^{13}+\frac{32\cdots 07}{9539374}a^{12}+\frac{10\cdots 35}{9539374}a^{11}-\frac{168312344561979}{56446}a^{10}+\frac{96\cdots 11}{733798}a^{9}-\frac{23\cdots 13}{56446}a^{8}+\frac{60\cdots 25}{56446}a^{7}+\frac{18\cdots 13}{1467596}a^{6}-\frac{754236828390939}{28223}a^{5}+\frac{182502807281133}{112892}a^{4}+\frac{60670617586479}{334}a^{3}-\frac{32\cdots 25}{4342}a^{2}+\frac{752911945561953}{334}a-\frac{956233916154837}{167}$, $\frac{10\cdots 89}{3224308412}a^{20}+\frac{222053873638097}{248023724}a^{19}-\frac{431551852638265}{248023724}a^{18}-\frac{6809198076353}{4769687}a^{17}+\frac{32120737609821}{4769687}a^{16}-\frac{1157445513345}{1467596}a^{15}-\frac{31131607974265}{1467596}a^{14}-\frac{85\cdots 35}{124011862}a^{13}-\frac{90\cdots 16}{4769687}a^{12}+\frac{35\cdots 35}{9539374}a^{11}+\frac{11\cdots 24}{366899}a^{10}-\frac{10\cdots 81}{733798}a^{9}+\frac{44079794745348}{28223}a^{8}+\frac{12\cdots 85}{28223}a^{7}+\frac{52\cdots 41}{1467596}a^{6}+\frac{11\cdots 95}{112892}a^{5}-\frac{21\cdots 57}{112892}a^{4}-\frac{34\cdots 98}{2171}a^{3}+\frac{32\cdots 65}{4342}a^{2}-\frac{513996455497371}{668}a-\frac{15\cdots 27}{668}$
|
| |
| Regulator: | \( 50323767605348790 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{9}\cdot 50323767605348790 \cdot 1}{2\cdot\sqrt{42600210199743647641790494093640979042918020345647}}\cr\approx \mathstrut & 0.470702043396706 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.1.9544178519053087.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 42 |
| Degree 7 sibling: | 7.1.9544178519053087.1 |
| Degree 14 sibling: | deg 14 |
| Minimal sibling: | 7.1.9544178519053087.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{7}$ | ${\href{/padicField/3.6.0.1}{6} }^{3}{,}\,{\href{/padicField/3.3.0.1}{3} }$ | ${\href{/padicField/5.6.0.1}{6} }^{3}{,}\,{\href{/padicField/5.3.0.1}{3} }$ | R | ${\href{/padicField/11.3.0.1}{3} }^{7}$ | R | ${\href{/padicField/17.6.0.1}{6} }^{3}{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.6.0.1}{6} }^{3}{,}\,{\href{/padicField/19.3.0.1}{3} }$ | ${\href{/padicField/23.3.0.1}{3} }^{7}$ | ${\href{/padicField/29.7.0.1}{7} }^{3}$ | ${\href{/padicField/31.6.0.1}{6} }^{3}{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.3.0.1}{3} }^{7}$ | ${\href{/padicField/41.2.0.1}{2} }^{9}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.7.0.1}{7} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }^{3}{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.3.0.1}{3} }^{7}$ | ${\href{/padicField/59.6.0.1}{6} }^{3}{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(7\)
| 7.1.21.35a3.1 | $x^{21} + 21 x^{15} + 7$ | $21$ | $1$ | $35$ | 21T4 | not computed |
|
\(13\)
| 13.1.7.6a1.1 | $x^{7} + 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $$[\ ]_{7}^{2}$$ |
| 13.1.7.6a1.1 | $x^{7} + 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $$[\ ]_{7}^{2}$$ | |
| 13.1.7.6a1.1 | $x^{7} + 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $$[\ ]_{7}^{2}$$ |