Normalized defining polynomial
\( x^{21} - x^{14} - 9x^{7} + 1 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[3, 9]$ |
| |
| Discriminant: |
\(-378818692265664781682717625943\)
\(\medspace = -\,7^{35}\)
|
| |
| Root discriminant: | \(25.62\) |
| |
| Galois root discriminant: | $7^{71/42}\approx 26.829842007890413$ | ||
| Ramified primes: |
\(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-7}) \) | ||
| $\Aut(K/\Q)$: | $C_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{6}$, $\frac{1}{4}a^{14}-\frac{1}{4}$, $\frac{1}{4}a^{15}-\frac{1}{4}a$, $\frac{1}{4}a^{16}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{17}-\frac{1}{4}a^{3}$, $\frac{1}{4}a^{18}-\frac{1}{4}a^{4}$, $\frac{1}{4}a^{19}-\frac{1}{4}a^{5}$, $\frac{1}{4}a^{20}-\frac{1}{4}a^{6}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{2}a^{19}-\frac{1}{2}a^{12}-4a^{5}$, $\frac{1}{4}a^{17}-\frac{9}{4}a^{3}$, $\frac{1}{2}a^{20}-\frac{1}{4}a^{17}-\frac{1}{2}a^{13}+\frac{1}{2}a^{10}+\frac{1}{2}a^{8}-4a^{6}+\frac{7}{4}a^{3}-a^{2}-\frac{1}{2}a-1$, $\frac{1}{2}a^{19}+\frac{1}{2}a^{18}+\frac{1}{4}a^{15}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{8}-5a^{5}-4a^{4}-a^{3}-\frac{7}{4}a-1$, $a^{20}-\frac{1}{2}a^{18}+\frac{1}{4}a^{17}+\frac{1}{4}a^{16}-\frac{1}{4}a^{15}-a^{13}+\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-9a^{6}+4a^{4}-\frac{7}{4}a^{3}-\frac{13}{4}a^{2}+\frac{9}{4}a$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{18}+\frac{1}{2}a^{17}-\frac{1}{4}a^{16}-\frac{1}{2}a^{12}+\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-5a^{5}+4a^{4}-4a^{3}+\frac{9}{4}a^{2}-a$, $\frac{1}{2}a^{19}-\frac{1}{4}a^{18}-\frac{1}{4}a^{17}+\frac{1}{4}a^{16}-\frac{1}{4}a^{14}-\frac{1}{2}a^{12}-4a^{5}+\frac{9}{4}a^{4}+\frac{9}{4}a^{3}-\frac{9}{4}a^{2}+\frac{5}{4}$, $a^{20}-\frac{1}{2}a^{18}-\frac{1}{4}a^{17}+\frac{1}{4}a^{15}+\frac{1}{4}a^{14}-a^{13}+\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-9a^{6}+4a^{4}+\frac{9}{4}a^{3}-\frac{9}{4}a-\frac{7}{4}$, $\frac{1}{2}a^{20}-\frac{3}{4}a^{19}+\frac{1}{4}a^{18}-\frac{1}{4}a^{15}-\frac{1}{2}a^{13}+a^{12}-\frac{1}{2}a^{9}-4a^{6}+\frac{27}{4}a^{5}-\frac{9}{4}a^{4}+\frac{1}{2}a^{2}+\frac{5}{4}a-1$, $\frac{5}{4}a^{20}-\frac{5}{4}a^{19}-\frac{1}{2}a^{18}+a^{17}+\frac{1}{4}a^{16}-\frac{1}{2}a^{15}-a^{13}+a^{12}+\frac{1}{2}a^{11}-a^{10}+\frac{1}{2}a^{8}-\frac{45}{4}a^{6}+\frac{45}{4}a^{5}+5a^{4}-9a^{3}-\frac{9}{4}a^{2}+4a$, $\frac{1}{4}a^{20}+\frac{1}{4}a^{19}-\frac{1}{4}a^{18}-\frac{1}{2}a^{12}+\frac{1}{2}a^{11}-\frac{9}{4}a^{6}-\frac{11}{4}a^{5}+\frac{11}{4}a^{4}-a^{3}+a^{2}-a$
|
| |
| Regulator: | \( 5449377.399032222 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{9}\cdot 5449377.399032222 \cdot 1}{2\cdot\sqrt{378818692265664781682717625943}}\cr\approx \mathstrut & 0.540517790116752 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.1.1977326743.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 42 |
| Degree 7 sibling: | 7.1.1977326743.1 |
| Degree 14 sibling: | deg 14 |
| Minimal sibling: | 7.1.1977326743.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{7}$ | ${\href{/padicField/3.6.0.1}{6} }^{3}{,}\,{\href{/padicField/3.3.0.1}{3} }$ | ${\href{/padicField/5.6.0.1}{6} }^{3}{,}\,{\href{/padicField/5.3.0.1}{3} }$ | R | ${\href{/padicField/11.3.0.1}{3} }^{7}$ | ${\href{/padicField/13.2.0.1}{2} }^{9}{,}\,{\href{/padicField/13.1.0.1}{1} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }^{3}{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.6.0.1}{6} }^{3}{,}\,{\href{/padicField/19.3.0.1}{3} }$ | ${\href{/padicField/23.3.0.1}{3} }^{7}$ | ${\href{/padicField/29.7.0.1}{7} }^{3}$ | ${\href{/padicField/31.6.0.1}{6} }^{3}{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.3.0.1}{3} }^{7}$ | ${\href{/padicField/41.2.0.1}{2} }^{9}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.7.0.1}{7} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }^{3}{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.3.0.1}{3} }^{7}$ | ${\href{/padicField/59.6.0.1}{6} }^{3}{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(7\)
| 7.1.21.35a3.1 | $x^{21} + 21 x^{15} + 7$ | $21$ | $1$ | $35$ | 21T4 | not computed |