Normalized defining polynomial
\( x^{21} - 6 x^{20} + x^{19} + 53 x^{18} - 27 x^{17} - 293 x^{16} - 9 x^{15} + 1527 x^{14} + 243 x^{13} - 5106 x^{12} - 1574 x^{11} + 12477 x^{10} + 3557 x^{9} - 22537 x^{8} + 2995 x^{7} + 24604 x^{6} - 19343 x^{5} - 8523 x^{4} + 22177 x^{3} - 14282 x^{2} + 4522 x - 290 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-374031156573051227998849803993088=-\,2^{14}\cdot 7^{15}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{796148116583083764535929184184402795775925} a^{20} - \frac{259292239729698288732324997129562977170203}{796148116583083764535929184184402795775925} a^{19} + \frac{150416872374995671637664918394436226711892}{796148116583083764535929184184402795775925} a^{18} - \frac{363987482340742186689364422134934742992396}{796148116583083764535929184184402795775925} a^{17} + \frac{33350122801515275735070383387383113815267}{159229623316616752907185836836880559155185} a^{16} + \frac{338280772537897054706960533681735783477712}{796148116583083764535929184184402795775925} a^{15} + \frac{290611127300889576100936145221925739089527}{796148116583083764535929184184402795775925} a^{14} - \frac{178173003328196749030556127475210222333967}{796148116583083764535929184184402795775925} a^{13} - \frac{352358698790741133149863645707755344052833}{796148116583083764535929184184402795775925} a^{12} - \frac{30792908495718744686693444825638085569896}{159229623316616752907185836836880559155185} a^{11} - \frac{85402893935499868853114767873089746288639}{796148116583083764535929184184402795775925} a^{10} + \frac{58038902839255511676666977970318858214832}{159229623316616752907185836836880559155185} a^{9} - \frac{57416505850450502178457428209919961662263}{796148116583083764535929184184402795775925} a^{8} + \frac{104109441349500928478368843322983084844999}{796148116583083764535929184184402795775925} a^{7} - \frac{47307510827809937105810172528344005536633}{796148116583083764535929184184402795775925} a^{6} - \frac{42413419211819386053887585677154594011184}{159229623316616752907185836836880559155185} a^{5} - \frac{103830121447669397017342045532153056827753}{796148116583083764535929184184402795775925} a^{4} - \frac{94078744414051075273123226938051346191782}{796148116583083764535929184184402795775925} a^{3} + \frac{114376764532565483851245697411469011366356}{796148116583083764535929184184402795775925} a^{2} - \frac{359270850951602533686579325125281822952189}{796148116583083764535929184184402795775925} a - \frac{1302782140151058893110896761122492700156}{5490676666090232858868477132306226177765}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 169090528.679 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_7$ (as 21T15):
| A solvable group of order 252 |
| The 21 conjugacy class representatives for $S_3\times F_7$ |
| Character table for $S_3\times F_7$ is not computed |
Intermediate fields
| 3.3.148.1, 7.1.851324971.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 37 | Data not computed | ||||||