Normalized defining polynomial
\( x^{21} - 7 x^{19} - 42 x^{18} + 21 x^{17} + 364 x^{16} + 749 x^{15} - 454 x^{14} - 4781 x^{13} - 9016 x^{12} - 1813 x^{11} + 8106 x^{10} + 2471 x^{9} - 39956 x^{8} + 12367 x^{7} + 34118 x^{6} - 37072 x^{5} - 7392 x^{4} + 11424 x^{3} + 448 x^{2} - 1792 x - 512 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-36650808577573618289031243371651268608=-\,2^{36}\cdot 7^{23}\cdot 11^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{3}{16} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{16} a^{7} - \frac{3}{16} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{11} - \frac{1}{32} a^{10} + \frac{1}{32} a^{9} - \frac{1}{32} a^{8} - \frac{3}{32} a^{7} + \frac{1}{32} a^{6} - \frac{1}{32} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{13} - \frac{1}{32} a^{10} + \frac{1}{32} a^{9} - \frac{1}{32} a^{8} - \frac{1}{8} a^{7} - \frac{3}{32} a^{6} + \frac{5}{64} a^{5} + \frac{5}{32} a^{4}$, $\frac{1}{64} a^{14} - \frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{32} a^{9} - \frac{1}{16} a^{8} - \frac{3}{32} a^{7} - \frac{7}{64} a^{6} - \frac{3}{32} a^{5} + \frac{3}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{384} a^{15} - \frac{1}{128} a^{14} + \frac{1}{192} a^{13} - \frac{1}{64} a^{12} + \frac{1}{96} a^{11} - \frac{1}{48} a^{10} - \frac{5}{192} a^{9} + \frac{1}{192} a^{8} - \frac{5}{384} a^{7} - \frac{7}{128} a^{6} + \frac{7}{48} a^{5} - \frac{5}{32} a^{4} + \frac{5}{24} a^{3} + \frac{1}{4} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{768} a^{16} - \frac{1}{768} a^{15} + \frac{1}{384} a^{14} - \frac{1}{384} a^{13} - \frac{1}{96} a^{12} + \frac{1}{64} a^{11} - \frac{7}{384} a^{10} + \frac{7}{128} a^{9} + \frac{47}{768} a^{8} - \frac{91}{768} a^{7} - \frac{13}{192} a^{6} - \frac{7}{96} a^{5} + \frac{19}{96} a^{4} - \frac{1}{24} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{1536} a^{17} - \frac{1}{1536} a^{15} - \frac{1}{256} a^{14} + \frac{5}{768} a^{13} + \frac{1}{96} a^{12} + \frac{7}{768} a^{11} + \frac{5}{384} a^{10} + \frac{85}{1536} a^{9} - \frac{1}{32} a^{8} + \frac{35}{1536} a^{7} - \frac{21}{256} a^{6} - \frac{7}{96} a^{5} - \frac{1}{32} a^{4} - \frac{1}{48} a^{3} + \frac{11}{24} a^{2}$, $\frac{1}{9216} a^{18} + \frac{1}{9216} a^{17} - \frac{5}{9216} a^{16} + \frac{1}{1024} a^{15} - \frac{1}{144} a^{14} - \frac{19}{4608} a^{13} - \frac{53}{4608} a^{12} - \frac{7}{4608} a^{11} + \frac{17}{9216} a^{10} - \frac{299}{9216} a^{9} + \frac{23}{1024} a^{8} - \frac{361}{3072} a^{7} + \frac{61}{1536} a^{6} - \frac{29}{576} a^{5} - \frac{59}{288} a^{4} + \frac{67}{288} a^{3} - \frac{41}{144} a^{2} + \frac{17}{36} a + \frac{7}{18}$, $\frac{1}{9216} a^{19} + \frac{1}{4608} a^{16} + \frac{5}{9216} a^{15} + \frac{19}{4608} a^{14} + \frac{1}{576} a^{13} + \frac{35}{2304} a^{12} - \frac{29}{9216} a^{11} - \frac{7}{2304} a^{10} - \frac{13}{576} a^{9} + \frac{17}{512} a^{8} - \frac{259}{3072} a^{7} + \frac{59}{4608} a^{6} + \frac{25}{144} a^{5} + \frac{1}{12} a^{4} + \frac{37}{288} a^{3} + \frac{19}{144} a^{2} - \frac{5}{12} a + \frac{5}{18}$, $\frac{1}{3193711247641646790217728} a^{20} - \frac{138337053162481731331}{3193711247641646790217728} a^{19} + \frac{2084747181290397191}{532285207940274465036288} a^{18} - \frac{13185893154305273873}{99803476488801462194304} a^{17} - \frac{589359431776725354497}{1064570415880548930072576} a^{16} - \frac{516155012818653266497}{1064570415880548930072576} a^{15} + \frac{9393073143859178881603}{1596855623820823395108864} a^{14} + \frac{132438471004615716215}{399213905955205848777216} a^{13} + \frac{30815245704248026862267}{3193711247641646790217728} a^{12} - \frac{23061891660564068964377}{3193711247641646790217728} a^{11} + \frac{2281268861110845406823}{177428402646758155012096} a^{10} + \frac{23274870906515090665835}{399213905955205848777216} a^{9} - \frac{12498936502740274657171}{1064570415880548930072576} a^{8} + \frac{105159686787175902909439}{3193711247641646790217728} a^{7} + \frac{8593794149205257288801}{177428402646758155012096} a^{6} - \frac{3461086151737871518051}{199606952977602924388608} a^{5} + \frac{774857450315409681335}{12475434561100182774288} a^{4} - \frac{24634848085052064328175}{99803476488801462194304} a^{3} + \frac{18331335621198840099857}{49901738244400731097152} a^{2} - \frac{5272599651777970239011}{12475434561100182774288} a + \frac{819727236672741844141}{6237717280550091387144}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2390509249850 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 588 |
| The 19 conjugacy class representatives for t21n23 |
| Character table for t21n23 |
Intermediate fields
| 3.3.4312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | R | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 7 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |