Normalized defining polynomial
\( x^{21} - x^{20} - 10 x^{19} + 26 x^{18} - 175 x^{17} + 893 x^{16} - 2535 x^{15} + 4105 x^{14} - 5396 x^{13} + 15522 x^{12} - 38866 x^{11} + 99374 x^{10} - 196980 x^{9} + 167386 x^{8} - 522437 x^{7} + 1728873 x^{6} - 1333540 x^{5} - 718864 x^{4} - 722371 x^{3} + 4119359 x^{2} - 3755923 x + 1239967 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-354859304882011896712926901003999617447=-\,3^{18}\cdot 7^{17}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{12} a^{14} + \frac{1}{6} a^{12} - \frac{1}{6} a^{8} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{12}$, $\frac{1}{12} a^{15} + \frac{1}{6} a^{13} - \frac{1}{6} a^{9} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{12} a - \frac{1}{2}$, $\frac{1}{12} a^{16} + \frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{3}$, $\frac{1}{36} a^{17} - \frac{1}{36} a^{15} - \frac{1}{36} a^{14} - \frac{1}{6} a^{13} + \frac{1}{9} a^{12} - \frac{1}{18} a^{11} - \frac{1}{6} a^{10} + \frac{2}{9} a^{9} + \frac{2}{9} a^{8} + \frac{5}{18} a^{6} + \frac{1}{9} a^{5} - \frac{1}{2} a^{4} + \frac{5}{36} a^{3} + \frac{2}{9} a^{2} - \frac{5}{12} a + \frac{1}{36}$, $\frac{1}{144} a^{18} + \frac{1}{144} a^{17} - \frac{1}{144} a^{16} + \frac{1}{36} a^{15} - \frac{1}{144} a^{14} + \frac{5}{72} a^{13} - \frac{11}{72} a^{12} - \frac{13}{72} a^{11} - \frac{1}{9} a^{10} + \frac{11}{72} a^{9} + \frac{2}{9} a^{8} - \frac{2}{9} a^{7} + \frac{13}{72} a^{6} + \frac{11}{72} a^{5} - \frac{67}{144} a^{4} - \frac{17}{144} a^{3} - \frac{37}{144} a^{2} - \frac{7}{18} a - \frac{59}{144}$, $\frac{1}{432} a^{19} + \frac{1}{432} a^{18} + \frac{1}{144} a^{17} + \frac{1}{27} a^{16} + \frac{7}{432} a^{15} - \frac{1}{72} a^{14} + \frac{25}{216} a^{13} - \frac{41}{216} a^{12} + \frac{1}{9} a^{11} + \frac{23}{216} a^{10} - \frac{2}{27} a^{9} + \frac{2}{9} a^{8} + \frac{25}{216} a^{7} - \frac{41}{216} a^{6} + \frac{55}{144} a^{5} - \frac{113}{432} a^{4} - \frac{113}{432} a^{3} - \frac{1}{12} a^{2} - \frac{131}{432} a - \frac{13}{54}$, $\frac{1}{10794464132049250379284584798021552057817503848593097328} a^{20} + \frac{447237304335654533009271690456974236805670951374525}{490657460547693199058390218091888729900795629481504424} a^{19} - \frac{5461764949327095292870349333883583133711840446585813}{5397232066024625189642292399010776028908751924296548664} a^{18} - \frac{79029296334758640940125763014449889299009267755604159}{10794464132049250379284584798021552057817503848593097328} a^{17} + \frac{363104414888832669773290000959467041336631879170742081}{10794464132049250379284584798021552057817503848593097328} a^{16} + \frac{170407451417524352587194162773541571586889251525006269}{10794464132049250379284584798021552057817503848593097328} a^{15} - \frac{168606438740870334181761039893106758787665990446676189}{5397232066024625189642292399010776028908751924296548664} a^{14} + \frac{520952598466161986532860882592905979676937298500311705}{2698616033012312594821146199505388014454375962148274332} a^{13} - \frac{1145843884889459148721890632310490148502669399948854807}{5397232066024625189642292399010776028908751924296548664} a^{12} + \frac{78062631423746518740129615988609402280131105292946907}{490657460547693199058390218091888729900795629481504424} a^{11} + \frac{979279236465915237862299417949910492778490602117421123}{5397232066024625189642292399010776028908751924296548664} a^{10} + \frac{118362544038861399436575757797142465992739173489844543}{2698616033012312594821146199505388014454375962148274332} a^{9} - \frac{1043778495789240293351980894980548589235762770905048795}{5397232066024625189642292399010776028908751924296548664} a^{8} - \frac{265781658479528628261068464350237916557493995946499281}{1349308016506156297410573099752694007227187981074137166} a^{7} + \frac{1636009820232879976298359893647228291315293715536558679}{10794464132049250379284584798021552057817503848593097328} a^{6} + \frac{374735959165226323111026265648191940968497679933153133}{2698616033012312594821146199505388014454375962148274332} a^{5} + \frac{33149505796652177324381723146338944695998845547644237}{674654008253078148705286549876347003613593990537068583} a^{4} + \frac{1344389886231855070541553889145248522636759507476773797}{10794464132049250379284584798021552057817503848593097328} a^{3} - \frac{13550206896356998814197069413727870850120626985664989}{10794464132049250379284584798021552057817503848593097328} a^{2} - \frac{316894966627192787765417510059748242845405473313329671}{10794464132049250379284584798021552057817503848593097328} a - \frac{1062338223824157322897890822607277363060526346545244417}{5397232066024625189642292399010776028908751924296548664}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 232645565732.53918 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.8281.2, 7.1.7141592367.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |