Normalized defining polynomial
\( x^{21} - 3 x^{20} + 6 x^{19} - 14 x^{18} + 24 x^{17} - 36 x^{16} + 48 x^{15} - 54 x^{14} + 51 x^{13} + \cdots - 1 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[3, 9]$ |
| |
| Discriminant: |
\(-335194620603462704888703\)
\(\medspace = -\,3^{28}\cdot 2447^{3}\)
|
| |
| Root discriminant: | \(13.19\) |
| |
| Galois root discriminant: | $3^{4/3}2447^{1/2}\approx 214.03197432877192$ | ||
| Ramified primes: |
\(3\), \(2447\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-2447}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{3516438736799}a^{20}-\frac{1095594088396}{3516438736799}a^{19}+\frac{1520020383480}{3516438736799}a^{18}+\frac{1395587027859}{3516438736799}a^{17}-\frac{1507328928725}{3516438736799}a^{16}-\frac{15856624350}{3516438736799}a^{15}-\frac{171069338844}{3516438736799}a^{14}-\frac{300330354981}{3516438736799}a^{13}+\frac{80228664672}{3516438736799}a^{12}-\frac{1262297793803}{3516438736799}a^{11}+\frac{217282525223}{3516438736799}a^{10}+\frac{855643305839}{3516438736799}a^{9}+\frac{1660519854962}{3516438736799}a^{8}+\frac{903033293712}{3516438736799}a^{7}-\frac{1718326130527}{3516438736799}a^{6}+\frac{873539162271}{3516438736799}a^{5}+\frac{1757790930504}{3516438736799}a^{4}+\frac{1239293514157}{3516438736799}a^{3}-\frac{266771440810}{3516438736799}a^{2}-\frac{167181132962}{3516438736799}a+\frac{151613034275}{3516438736799}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{414739216674}{3516438736799}a^{20}+\frac{1193751919262}{3516438736799}a^{19}-\frac{4576583471477}{3516438736799}a^{18}+\frac{7332354333653}{3516438736799}a^{17}-\frac{20194341693421}{3516438736799}a^{16}+\frac{35333135944373}{3516438736799}a^{15}-\frac{51850991228568}{3516438736799}a^{14}+\frac{68174776075344}{3516438736799}a^{13}-\frac{73566962694729}{3516438736799}a^{12}+\frac{72004196471756}{3516438736799}a^{11}-\frac{4205308596470}{3516438736799}a^{10}+\frac{7086955464572}{3516438736799}a^{9}+\frac{72297924689449}{3516438736799}a^{8}-\frac{51202827582050}{3516438736799}a^{7}+\frac{98824834120061}{3516438736799}a^{6}-\frac{12610530965056}{3516438736799}a^{5}+\frac{37196431188786}{3516438736799}a^{4}+\frac{4723959349031}{3516438736799}a^{3}-\frac{2139833571487}{3516438736799}a^{2}+\frac{13847956172018}{3516438736799}a-\frac{844415500404}{3516438736799}$, $\frac{739226843868}{3516438736799}a^{20}+\frac{2006932987810}{3516438736799}a^{19}-\frac{2437660913151}{3516438736799}a^{18}+\frac{5420061263557}{3516438736799}a^{17}-\frac{8286787609548}{3516438736799}a^{16}+\frac{6271365717496}{3516438736799}a^{15}-\frac{3596289107441}{3516438736799}a^{14}-\frac{3788267435349}{3516438736799}a^{13}+\frac{14851566249884}{3516438736799}a^{12}-\frac{35360114544355}{3516438736799}a^{11}+\frac{28820482760662}{3516438736799}a^{10}-\frac{19674414362063}{3516438736799}a^{9}+\frac{13199755195918}{3516438736799}a^{8}+\frac{13563096235188}{3516438736799}a^{7}-\frac{24873304732484}{3516438736799}a^{6}+\frac{30659776321647}{3516438736799}a^{5}-\frac{1705306140258}{3516438736799}a^{4}+\frac{14290451109104}{3516438736799}a^{3}+\frac{5493116551456}{3516438736799}a^{2}-\frac{2353624975666}{3516438736799}a+\frac{6776203161924}{3516438736799}$, $a$, $\frac{196797211032}{3516438736799}a^{20}-\frac{645631536496}{3516438736799}a^{19}+\frac{1498665885046}{3516438736799}a^{18}-\frac{3896234543762}{3516438736799}a^{17}+\frac{7027328142756}{3516438736799}a^{16}-\frac{11227920073503}{3516438736799}a^{15}+\frac{17336043536800}{3516438736799}a^{14}-\frac{21206012857743}{3516438736799}a^{13}+\frac{22970442557862}{3516438736799}a^{12}-\frac{18062686891578}{3516438736799}a^{11}+\frac{11401703913578}{3516438736799}a^{10}+\frac{2626777720628}{3516438736799}a^{9}-\frac{15070231847106}{3516438736799}a^{8}+\frac{17109734948419}{3516438736799}a^{7}-\frac{19685444195926}{3516438736799}a^{6}+\frac{15356710457014}{3516438736799}a^{5}-\frac{8287608808646}{3516438736799}a^{4}+\frac{991665408251}{3516438736799}a^{3}-\frac{108895478145}{3516438736799}a^{2}+\frac{1185397698958}{3516438736799}a+\frac{3480700344266}{3516438736799}$, $\frac{915295302379}{3516438736799}a^{20}+\frac{3530693683349}{3516438736799}a^{19}-\frac{6898275595582}{3516438736799}a^{18}+\frac{14267277217496}{3516438736799}a^{17}-\frac{26478274189794}{3516438736799}a^{16}+\frac{37801448807191}{3516438736799}a^{15}-\frac{47456020110302}{3516438736799}a^{14}+\frac{51180464621683}{3516438736799}a^{13}-\frac{43820404449595}{3516438736799}a^{12}+\frac{11149859401864}{3516438736799}a^{11}+\frac{15848923659553}{3516438736799}a^{10}-\frac{32649769767176}{3516438736799}a^{9}+\frac{51616518759614}{3516438736799}a^{8}-\frac{45514310541507}{3516438736799}a^{7}+\frac{27060359181825}{3516438736799}a^{6}-\frac{1433812988432}{3516438736799}a^{5}+\frac{12799510770069}{3516438736799}a^{4}+\frac{1764747933490}{3516438736799}a^{3}-\frac{5543875922047}{3516438736799}a^{2}+\frac{590357002479}{3516438736799}a+\frac{2364635495980}{3516438736799}$, $\frac{279541031090}{3516438736799}a^{20}-\frac{1007587538257}{3516438736799}a^{19}+\frac{2422887259799}{3516438736799}a^{18}-\frac{6055762454443}{3516438736799}a^{17}+\frac{11680813763400}{3516438736799}a^{16}-\frac{19296165999665}{3516438736799}a^{15}+\frac{29394742564198}{3516438736799}a^{14}-\frac{38506976884920}{3516438736799}a^{13}+\frac{42907813300921}{3516438736799}a^{12}-\frac{36805689866328}{3516438736799}a^{11}+\frac{25688527962932}{3516438736799}a^{10}+\frac{332347276965}{3516438736799}a^{9}-\frac{22716092668458}{3516438736799}a^{8}+\frac{41221253083774}{3516438736799}a^{7}-\frac{41427168811350}{3516438736799}a^{6}+\frac{39884044068564}{3516438736799}a^{5}-\frac{20167865893171}{3516438736799}a^{4}+\frac{7801678554844}{3516438736799}a^{3}+\frac{2141551365086}{3516438736799}a^{2}-\frac{3695167159969}{3516438736799}a+\frac{4906376548258}{3516438736799}$, $\frac{798371563233}{3516438736799}a^{20}-\frac{2586050174275}{3516438736799}a^{19}+\frac{5146115854294}{3516438736799}a^{18}-\frac{11442105573124}{3516438736799}a^{17}+\frac{19514538650820}{3516438736799}a^{16}-\frac{28045818077234}{3516438736799}a^{15}+\frac{35425376201696}{3516438736799}a^{14}-\frac{36017126013834}{3516438736799}a^{13}+\frac{28155675687308}{3516438736799}a^{12}+\frac{922213509013}{3516438736799}a^{11}-\frac{16379565784795}{3516438736799}a^{10}+\frac{44342795657528}{3516438736799}a^{9}-\frac{42717900581453}{3516438736799}a^{8}+\frac{39116634526919}{3516438736799}a^{7}-\frac{7943519224079}{3516438736799}a^{6}-\frac{4389677537257}{3516438736799}a^{5}+\frac{12230920190989}{3516438736799}a^{4}-\frac{14275026868480}{3516438736799}a^{3}+\frac{1270588493510}{3516438736799}a^{2}+\frac{921178937315}{3516438736799}a-\frac{3957910209667}{3516438736799}$, $\frac{1035865516525}{3516438736799}a^{20}-\frac{2436040291470}{3516438736799}a^{19}+\frac{4419257199699}{3516438736799}a^{18}-\frac{10890419476085}{3516438736799}a^{17}+\frac{15970243263724}{3516438736799}a^{16}-\frac{22651682356550}{3516438736799}a^{15}+\frac{27316810022714}{3516438736799}a^{14}-\frac{25307051438575}{3516438736799}a^{13}+\frac{18149796891377}{3516438736799}a^{12}+\frac{11785514306872}{3516438736799}a^{11}-\frac{6211174658982}{3516438736799}a^{10}+\frac{48808070248012}{3516438736799}a^{9}-\frac{17767559848283}{3516438736799}a^{8}+\frac{42859792690341}{3516438736799}a^{7}+\frac{14266837759183}{3516438736799}a^{6}+\frac{16999059017351}{3516438736799}a^{5}+\frac{24309385965274}{3516438736799}a^{4}+\frac{3271308256912}{3516438736799}a^{3}+\frac{9196544847260}{3516438736799}a^{2}+\frac{4130258916312}{3516438736799}a+\frac{1048822203920}{3516438736799}$, $\frac{766135471404}{3516438736799}a^{20}-\frac{1927946603221}{3516438736799}a^{19}+\frac{4383885170379}{3516438736799}a^{18}-\frac{11317992019885}{3516438736799}a^{17}+\frac{18433492152834}{3516438736799}a^{16}-\frac{30039184259359}{3516438736799}a^{15}+\frac{42588151935682}{3516438736799}a^{14}-\frac{50115579992927}{3516438736799}a^{13}+\frac{50739460607158}{3516438736799}a^{12}-\frac{28141150024286}{3516438736799}a^{11}+\frac{21629747758335}{3516438736799}a^{10}+\frac{38588605733724}{3516438736799}a^{9}-\frac{35956873329280}{3516438736799}a^{8}+\frac{72226705098067}{3516438736799}a^{7}-\frac{32154431592173}{3516438736799}a^{6}+\frac{50865319519308}{3516438736799}a^{5}+\frac{5515971839260}{3516438736799}a^{4}-\frac{340066684537}{3516438736799}a^{3}+\frac{9913604488116}{3516438736799}a^{2}-\frac{3099890244650}{3516438736799}a+\frac{7113186406355}{3516438736799}$, $\frac{934207316653}{3516438736799}a^{20}+\frac{2788477175501}{3516438736799}a^{19}-\frac{6254895348198}{3516438736799}a^{18}+\frac{14944145625491}{3516438736799}a^{17}-\frac{25477180575682}{3516438736799}a^{16}+\frac{40444617833952}{3516438736799}a^{15}-\frac{55769125813822}{3516438736799}a^{14}+\frac{64873797100143}{3516438736799}a^{13}-\frac{64013497928519}{3516438736799}a^{12}+\frac{34105229646819}{3516438736799}a^{11}-\frac{18905427762851}{3516438736799}a^{10}-\frac{41953519419196}{3516438736799}a^{9}+\frac{44332904688932}{3516438736799}a^{8}-\frac{74983449607455}{3516438736799}a^{7}+\frac{35156712596241}{3516438736799}a^{6}-\frac{45022940418614}{3516438736799}a^{5}+\frac{1994377245852}{3516438736799}a^{4}-\frac{2789116987481}{3516438736799}a^{3}-\frac{1937742095669}{3516438736799}a^{2}-\frac{1139380432953}{3516438736799}a-\frac{3106966348827}{3516438736799}$, $\frac{1357412446424}{3516438736799}a^{20}-\frac{3059235462074}{3516438736799}a^{19}+\frac{5203790289690}{3516438736799}a^{18}-\frac{12978410560280}{3516438736799}a^{17}+\frac{18414946765713}{3516438736799}a^{16}-\frac{25157358185538}{3516438736799}a^{15}+\frac{29202222663721}{3516438736799}a^{14}-\frac{25707549805294}{3516438736799}a^{13}+\frac{16601492184258}{3516438736799}a^{12}+\frac{20606189174740}{3516438736799}a^{11}-\frac{5526763151737}{3516438736799}a^{10}+\frac{55532772797938}{3516438736799}a^{9}-\frac{13465592858800}{3516438736799}a^{8}+\frac{48192618960017}{3516438736799}a^{7}+\frac{20901791479920}{3516438736799}a^{6}+\frac{25882269246352}{3516438736799}a^{5}+\frac{20033354808500}{3516438736799}a^{4}+\frac{2524010011682}{3516438736799}a^{3}+\frac{11584366604777}{3516438736799}a^{2}+\frac{3981177479354}{3516438736799}a+\frac{2572303297022}{3516438736799}$
|
| |
| Regulator: | \( 1491.359478528498 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{9}\cdot 1491.359478528498 \cdot 1}{2\cdot\sqrt{335194620603462704888703}}\cr\approx \mathstrut & 0.157257955532060 \end{aligned}\]
Galois group
$D_7\wr C_3$ (as 21T45):
| A solvable group of order 8232 |
| The 55 conjugacy class representatives for $D_7\wr C_3$ |
| Character table for $D_7\wr C_3$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 28 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | ${\href{/padicField/5.6.0.1}{6} }^{3}{,}\,{\href{/padicField/5.3.0.1}{3} }$ | ${\href{/padicField/7.6.0.1}{6} }^{3}{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.6.0.1}{6} }^{3}{,}\,{\href{/padicField/11.3.0.1}{3} }$ | $21$ | ${\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{6}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.7.0.1}{7} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }^{3}{,}\,{\href{/padicField/23.3.0.1}{3} }$ | ${\href{/padicField/29.6.0.1}{6} }^{3}{,}\,{\href{/padicField/29.3.0.1}{3} }$ | $21$ | ${\href{/padicField/37.7.0.1}{7} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.6.0.1}{6} }^{3}{,}\,{\href{/padicField/41.3.0.1}{3} }$ | $21$ | ${\href{/padicField/47.6.0.1}{6} }^{3}{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.7.0.1}{7} }^{3}$ | ${\href{/padicField/59.6.0.1}{6} }^{3}{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.7.3.28a2.1 | $x^{21} + 6 x^{16} + 9 x^{14} + 12 x^{11} + 36 x^{9} + 15 x^{7} + 8 x^{6} + 36 x^{4} + 30 x^{2} + 10$ | $3$ | $7$ | $28$ | $C_{21}$ | not computed |
|
\(2447\)
| $\Q_{2447}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{2447}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ |