Normalized defining polynomial
\( x^{21} - 6024 x^{14} - 3354880 x^{7} + 2097152 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3323456621672145880164070108616782869016870912=-\,2^{18}\cdot 7^{29}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $147.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{4} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{8} a^{8}$, $\frac{1}{16} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{10} - \frac{1}{4} a^{3}$, $\frac{1}{224} a^{11} - \frac{3}{224} a^{10} + \frac{3}{112} a^{9} + \frac{1}{56} a^{8} + \frac{1}{28} a^{7} + \frac{1}{28} a^{4} - \frac{3}{28} a^{3} + \frac{3}{14} a^{2} + \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{448} a^{12} + \frac{1}{112} a^{10} + \frac{1}{56} a^{9} - \frac{1}{56} a^{8} + \frac{3}{56} a^{7} + \frac{1}{56} a^{5} + \frac{1}{14} a^{3} + \frac{1}{7} a^{2} - \frac{1}{7} a + \frac{3}{7}$, $\frac{1}{896} a^{13} - \frac{1}{112} a^{10} + \frac{3}{112} a^{9} - \frac{3}{56} a^{8} - \frac{1}{28} a^{7} - \frac{13}{112} a^{6} - \frac{1}{14} a^{3} + \frac{3}{14} a^{2} - \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{32566016} a^{14} - \frac{118641}{4070752} a^{7} + \frac{52901}{127211}$, $\frac{1}{65132032} a^{15} - \frac{118641}{8141504} a^{8} + \frac{52901}{254422} a$, $\frac{1}{260528128} a^{16} - \frac{118641}{32566016} a^{9} - \frac{201521}{1017688} a^{2}$, $\frac{1}{1042112512} a^{17} - \frac{118641}{130264064} a^{10} - \frac{201521}{4070752} a^{3}$, $\frac{1}{4168450048} a^{18} - \frac{118641}{521056256} a^{11} + \frac{3869231}{16283008} a^{4}$, $\frac{1}{16673800192} a^{19} + \frac{2207503}{2084225024} a^{12} + \frac{1}{224} a^{10} + \frac{1}{112} a^{9} + \frac{3}{56} a^{8} - \frac{1}{28} a^{7} + \frac{4450767}{65132032} a^{5} + \frac{1}{28} a^{3} + \frac{1}{14} a^{2} + \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{66695200768} a^{20} + \frac{2207503}{8336900096} a^{13} + \frac{3}{224} a^{10} - \frac{1}{112} a^{9} + \frac{1}{56} a^{8} + \frac{3}{56} a^{7} - \frac{11832241}{260528128} a^{6} + \frac{3}{28} a^{3} - \frac{1}{14} a^{2} + \frac{1}{7} a + \frac{3}{7}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 344775518800903.25 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.8281.1, Deg 7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |