Normalized defining polynomial
\( x^{21} - 42 x^{19} - 28 x^{18} + 756 x^{17} + 1008 x^{16} - 7224 x^{15} - 15120 x^{14} + 35280 x^{13} + 118720 x^{12} - 42336 x^{11} - 490560 x^{10} - 390208 x^{9} + 822528 x^{8} + 1731690 x^{7} + 587076 x^{6} - 1685880 x^{5} - 2690352 x^{4} - 1936928 x^{3} - 786240 x^{2} - 174720 x - 16640 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-318062903129424660912972298023257033932800=-\,2^{32}\cdot 3^{22}\cdot 5^{2}\cdot 7^{21}\cdot 13^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{8} a^{15} + \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} - \frac{7}{32} a^{14} + \frac{1}{8} a^{13} + \frac{1}{16} a^{12} + \frac{3}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{11}{32} a^{2} + \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{512} a^{17} - \frac{9}{256} a^{15} - \frac{23}{128} a^{14} - \frac{35}{128} a^{13} - \frac{3}{32} a^{12} + \frac{9}{64} a^{11} + \frac{3}{32} a^{10} + \frac{5}{32} a^{9} - \frac{3}{8} a^{8} - \frac{3}{16} a^{7} + \frac{3}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{53}{256} a^{3} - \frac{47}{128} a^{2} + \frac{15}{64} a + \frac{11}{32}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} - \frac{9}{2048} a^{16} - \frac{7}{512} a^{15} + \frac{139}{1024} a^{14} - \frac{99}{512} a^{13} - \frac{171}{512} a^{12} - \frac{19}{128} a^{11} - \frac{33}{256} a^{10} + \frac{37}{128} a^{9} + \frac{9}{128} a^{8} - \frac{1}{32} a^{7} + \frac{17}{64} a^{6} - \frac{1}{32} a^{5} - \frac{203}{2048} a^{4} - \frac{121}{256} a^{3} + \frac{31}{256} a^{2} - \frac{9}{64} a + \frac{21}{128}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} - \frac{7}{16384} a^{17} - \frac{5}{8192} a^{16} + \frac{167}{8192} a^{15} - \frac{119}{2048} a^{14} + \frac{1051}{4096} a^{13} - \frac{379}{2048} a^{12} - \frac{213}{2048} a^{11} - \frac{93}{512} a^{10} + \frac{191}{1024} a^{9} + \frac{53}{512} a^{8} - \frac{43}{512} a^{7} - \frac{41}{128} a^{6} + \frac{1973}{16384} a^{5} - \frac{3353}{8192} a^{4} - \frac{751}{2048} a^{3} + \frac{463}{1024} a^{2} - \frac{327}{1024} a - \frac{149}{512}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} + \frac{13}{131072} a^{18} - \frac{29}{32768} a^{17} - \frac{151}{65536} a^{16} - \frac{185}{32768} a^{15} + \frac{4071}{32768} a^{14} - \frac{2245}{8192} a^{13} - \frac{5911}{16384} a^{12} + \frac{2055}{8192} a^{11} - \frac{4029}{8192} a^{10} - \frac{631}{2048} a^{9} + \frac{1587}{4096} a^{8} - \frac{531}{2048} a^{7} + \frac{54453}{131072} a^{6} - \frac{16125}{32768} a^{5} - \frac{14809}{32768} a^{4} - \frac{1807}{4096} a^{3} - \frac{1677}{8192} a^{2} + \frac{427}{2048} a + \frac{401}{2048}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12580414183000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5878656 |
| The 105 conjugacy class representatives for t21n133 are not computed |
| Character table for t21n133 is not computed |
Intermediate fields
| 7.1.52706752.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | $18{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ | $21$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.26.11 | $x^{14} + 2 x^{13} - 2 x^{12} + 4 x^{10} + 4 x^{9} + 4 x^{8} + 2 x^{6} + 4 x^{5} + 4 x^{3} + 2 x^{2} + 2$ | $14$ | $1$ | $26$ | 14T35 | $[18/7, 18/7, 18/7, 20/7, 20/7, 20/7]_{7}^{3}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.12.0.1 | $x^{12} - x^{3} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |