Properties

Label 21.3.31802469923...8687.1
Degree $21$
Signature $[3, 9]$
Discriminant $-\,7^{29}\cdot 61^{14}$
Root discriminant $227.65$
Ramified primes $7, 61$
Class number $21$ (GRH)
Class group $[21]$ (GRH)
Galois group $C_3\times F_7$ (as 21T9)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 0, 0, 0, 0, 0, -8521, 0, 0, 0, 0, 0, 0, -449, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 449*x^14 - 8521*x^7 + 1)
 
gp: K = bnfinit(x^21 - 449*x^14 - 8521*x^7 + 1, 1)
 

Normalized defining polynomial

\( x^{21} - 449 x^{14} - 8521 x^{7} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-31802469923372977610337732723351505277264012368687=-\,7^{29}\cdot 61^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $227.65$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 61$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{14} a^{11} + \frac{1}{14} a^{10} + \frac{3}{14} a^{9} - \frac{3}{14} a^{8} + \frac{1}{7} a^{7} - \frac{5}{14} a^{4} - \frac{5}{14} a^{3} - \frac{1}{14} a^{2} + \frac{1}{14} a + \frac{2}{7}$, $\frac{1}{14} a^{12} + \frac{1}{7} a^{10} + \frac{1}{14} a^{9} - \frac{1}{7} a^{8} - \frac{1}{7} a^{7} - \frac{5}{14} a^{5} + \frac{2}{7} a^{3} - \frac{5}{14} a^{2} - \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{14} a^{13} - \frac{1}{14} a^{10} - \frac{1}{14} a^{9} - \frac{3}{14} a^{8} + \frac{3}{14} a^{7} - \frac{5}{14} a^{6} + \frac{5}{14} a^{3} + \frac{5}{14} a^{2} + \frac{1}{14} a - \frac{1}{14}$, $\frac{1}{4844} a^{14} - \frac{62}{1211} a^{7} - \frac{241}{4844}$, $\frac{1}{4844} a^{15} - \frac{62}{1211} a^{8} - \frac{241}{4844} a$, $\frac{1}{4844} a^{16} - \frac{62}{1211} a^{9} - \frac{241}{4844} a^{2}$, $\frac{1}{4844} a^{17} - \frac{62}{1211} a^{10} - \frac{241}{4844} a^{3}$, $\frac{1}{4844} a^{18} + \frac{7}{346} a^{11} + \frac{1}{14} a^{10} + \frac{3}{14} a^{9} - \frac{3}{14} a^{8} + \frac{1}{7} a^{7} - \frac{1971}{4844} a^{4} - \frac{5}{14} a^{3} - \frac{1}{14} a^{2} + \frac{1}{14} a + \frac{2}{7}$, $\frac{1}{4844} a^{19} + \frac{7}{346} a^{12} + \frac{1}{7} a^{10} + \frac{1}{14} a^{9} - \frac{1}{7} a^{8} - \frac{1}{7} a^{7} - \frac{1971}{4844} a^{5} + \frac{2}{7} a^{3} - \frac{5}{14} a^{2} - \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{4844} a^{20} + \frac{7}{346} a^{13} - \frac{1}{14} a^{10} - \frac{1}{14} a^{9} - \frac{3}{14} a^{8} + \frac{3}{14} a^{7} - \frac{1971}{4844} a^{6} + \frac{5}{14} a^{3} + \frac{5}{14} a^{2} + \frac{1}{14} a - \frac{1}{14}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{21}$, which has order $21$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2471124664442345.5 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times F_7$ (as 21T9):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 126
The 21 conjugacy class representatives for $C_3\times F_7$
Character table for $C_3\times F_7$ is not computed

Intermediate fields

3.3.182329.2, 7.1.558729626298487.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 21 siblings: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.3.0.1}{3} }^{7}$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ R $21$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ $21$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ $21$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ $21$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
61Data not computed