Normalized defining polynomial
\( x^{21} - 21 x^{19} - 11 x^{18} + 189 x^{17} - 978 x^{15} + 693 x^{14} + 3759 x^{13} + 2519 x^{12} + 3213 x^{11} - 30030 x^{10} - 29151 x^{9} + 12474 x^{8} - 95907 x^{7} + 698269 x^{6} + 658350 x^{5} - 1504272 x^{4} - 8525 x^{3} + 557865 x^{2} - 85701 x - 57365 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-29588990284336432332939370460310604619437105887=-\,3^{28}\cdot 7^{17}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $163.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} - \frac{4}{11} a^{17} - \frac{3}{11} a^{16} + \frac{1}{11} a^{14} - \frac{3}{11} a^{13} + \frac{4}{11} a^{12} - \frac{4}{11} a^{11} - \frac{2}{11} a^{9} + \frac{3}{11} a^{8} - \frac{5}{11} a^{7}$, $\frac{1}{11} a^{19} + \frac{3}{11} a^{17} - \frac{1}{11} a^{16} + \frac{1}{11} a^{15} + \frac{1}{11} a^{14} + \frac{3}{11} a^{13} + \frac{1}{11} a^{12} - \frac{5}{11} a^{11} - \frac{2}{11} a^{10} - \frac{5}{11} a^{9} - \frac{4}{11} a^{8} + \frac{2}{11} a^{7}$, $\frac{1}{651259630870552923321144887811584423048671914315679007626919} a^{20} - \frac{14629453198616827607837693054565770665311613701101801986788}{651259630870552923321144887811584423048671914315679007626919} a^{19} + \frac{19916198824384363269958468531882288508639981305519057403627}{651259630870552923321144887811584423048671914315679007626919} a^{18} - \frac{149593578816991583655142253287626925465405169221985676352249}{651259630870552923321144887811584423048671914315679007626919} a^{17} + \frac{145346765488057271245489764404784391166571812931111254649392}{651259630870552923321144887811584423048671914315679007626919} a^{16} + \frac{2446800661903588442113666004497875340407011066385684256538}{651259630870552923321144887811584423048671914315679007626919} a^{15} - \frac{35830071821877989342363615619214010753656632781833338816992}{651259630870552923321144887811584423048671914315679007626919} a^{14} - \frac{285772873301654447540304666697309897425330323507000480597748}{651259630870552923321144887811584423048671914315679007626919} a^{13} + \frac{96668418467061224626482003862765820680681046668507896647661}{651259630870552923321144887811584423048671914315679007626919} a^{12} - \frac{48348331364552917407470373113572666756471334471693798924437}{651259630870552923321144887811584423048671914315679007626919} a^{11} + \frac{93904399381497556179790992065835364170341857861126287655388}{651259630870552923321144887811584423048671914315679007626919} a^{10} + \frac{173869665646000778889585465343383608550209724665884560918056}{651259630870552923321144887811584423048671914315679007626919} a^{9} - \frac{308863295318798428374037705162229219156436107198464712617825}{651259630870552923321144887811584423048671914315679007626919} a^{8} - \frac{214932226200400992442318683230287633465701975493515624925173}{651259630870552923321144887811584423048671914315679007626919} a^{7} + \frac{9917739609224327280488548144838627273510953026938812494654}{59205420988232083938285898891962220277151992210516273420629} a^{6} + \frac{16791473526838832723948211121847337005761031118615011814180}{59205420988232083938285898891962220277151992210516273420629} a^{5} + \frac{6238080181879763134373571440540660514490281481051185104327}{59205420988232083938285898891962220277151992210516273420629} a^{4} - \frac{20861416044370500100751815411227939636606862109110671373447}{59205420988232083938285898891962220277151992210516273420629} a^{3} - \frac{20996920271410282324789337123403459080478396017064753359911}{59205420988232083938285898891962220277151992210516273420629} a^{2} + \frac{22760519422194052378607337619669339810862200245730224145870}{59205420988232083938285898891962220277151992210516273420629} a + \frac{19243718220906218987843684344714176029289458444634629254749}{59205420988232083938285898891962220277151992210516273420629}$
Class group and class number
$C_{21}$, which has order $21$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81427960974978.42 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.3969.2, Deg 7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ | R | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |