Normalized defining polynomial
\( x^{21} + 15 x^{19} - 10 x^{18} + 72 x^{17} - 96 x^{16} + 140 x^{15} - 216 x^{14} + 225 x^{13} - 248 x^{12} + 702 x^{11} - 1716 x^{10} + 1447 x^{9} + 1476 x^{8} - 6567 x^{7} + 14462 x^{6} - 22572 x^{5} + 23256 x^{4} - 15184 x^{3} + 6048 x^{2} - 1344 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-26359610632521358718509715590889472=-\,2^{14}\cdot 3^{21}\cdot 13^{6}\cdot 19\cdot 109^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 19, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{3}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{8} a^{3} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} - \frac{21}{64} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{4} a^{11} - \frac{1}{16} a^{10} + \frac{1}{4} a^{9} - \frac{31}{64} a^{8} + \frac{3}{32} a^{7} + \frac{5}{32} a^{6} - \frac{1}{8} a^{5} - \frac{9}{64} a^{4} - \frac{5}{32} a^{3} - \frac{11}{64} a^{2} - \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{17} - \frac{25}{512} a^{15} - \frac{101}{256} a^{14} - \frac{5}{16} a^{13} - \frac{1}{32} a^{12} - \frac{41}{128} a^{11} - \frac{7}{64} a^{10} + \frac{129}{512} a^{9} - \frac{7}{64} a^{8} - \frac{21}{256} a^{7} + \frac{51}{128} a^{6} - \frac{153}{512} a^{5} + \frac{57}{128} a^{4} - \frac{159}{512} a^{3} - \frac{17}{256} a^{2} - \frac{1}{128} a + \frac{5}{64}$, $\frac{1}{4096} a^{18} + \frac{1}{2048} a^{17} - \frac{25}{4096} a^{16} - \frac{63}{1024} a^{15} + \frac{115}{1024} a^{14} - \frac{117}{256} a^{13} - \frac{433}{1024} a^{12} - \frac{15}{32} a^{11} + \frac{1041}{4096} a^{10} + \frac{101}{2048} a^{9} - \frac{333}{2048} a^{8} - \frac{177}{512} a^{7} - \frac{1281}{4096} a^{6} - \frac{295}{2048} a^{5} - \frac{727}{4096} a^{4} + \frac{5}{128} a^{3} + \frac{183}{512} a^{2} + \frac{17}{128} a - \frac{59}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{27}{32768} a^{17} - \frac{51}{16384} a^{16} + \frac{93}{8192} a^{15} - \frac{147}{4096} a^{14} + \frac{839}{8192} a^{13} - \frac{1117}{4096} a^{12} - \frac{10223}{32768} a^{11} + \frac{2713}{8192} a^{10} - \frac{907}{16384} a^{9} - \frac{1275}{8192} a^{8} - \frac{3665}{32768} a^{7} + \frac{471}{4096} a^{6} - \frac{6979}{32768} a^{5} - \frac{2731}{16384} a^{4} - \frac{697}{4096} a^{3} + \frac{117}{2048} a^{2} - \frac{23}{2048} a + \frac{1}{1024}$, $\frac{1}{262144} a^{20} - \frac{1}{131072} a^{19} + \frac{19}{262144} a^{18} - \frac{3}{16384} a^{17} + \frac{21}{32768} a^{16} - \frac{27}{16384} a^{15} + \frac{251}{65536} a^{14} - \frac{139}{16384} a^{13} + \frac{4673}{262144} a^{12} - \frac{4797}{131072} a^{11} + \frac{9945}{131072} a^{10} - \frac{5187}{32768} a^{9} + \frac{84439}{262144} a^{8} + \frac{47371}{131072} a^{7} + \frac{66093}{262144} a^{6} - \frac{29431}{65536} a^{5} - \frac{12317}{65536} a^{4} + \frac{1903}{4096} a^{3} + \frac{211}{16384} a^{2} - \frac{11}{4096} a + \frac{1}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 870790491.988 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 47029248 |
| The 228 conjugacy class representatives for t21n147 are not computed |
| Character table for t21n147 is not computed |
Intermediate fields
| 7.3.2007889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{5}$ | R | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.10 | $x^{14} + x^{12} + 2 x^{11} + 2 x^{9} + 2 x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.8.0.1 | $x^{8} - x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 109.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 109.8.4.1 | $x^{8} + 712860 x^{4} - 1295029 x^{2} + 127042344900$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |