Properties

Label 21.3.261...703.2
Degree $21$
Signature $[3, 9]$
Discriminant $-2.616\times 10^{34}$
Root discriminant \(43.54\)
Ramified primes $7,13$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $F_7$ (as 21T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 29*x^17 - 32*x^16 + 201*x^15 - 718*x^14 + 847*x^13 + 988*x^12 - 1701*x^11 - 6256*x^10 + 18797*x^9 - 15492*x^8 - 45562*x^7 + 150977*x^6 - 83972*x^5 - 198072*x^4 + 215936*x^3 + 70896*x^2 - 133952*x + 19264)
 
Copy content gp:K = bnfinit(y^21 - 7*y^20 + 21*y^19 - 34*y^18 + 29*y^17 - 32*y^16 + 201*y^15 - 718*y^14 + 847*y^13 + 988*y^12 - 1701*y^11 - 6256*y^10 + 18797*y^9 - 15492*y^8 - 45562*y^7 + 150977*y^6 - 83972*y^5 - 198072*y^4 + 215936*y^3 + 70896*y^2 - 133952*y + 19264, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 29*x^17 - 32*x^16 + 201*x^15 - 718*x^14 + 847*x^13 + 988*x^12 - 1701*x^11 - 6256*x^10 + 18797*x^9 - 15492*x^8 - 45562*x^7 + 150977*x^6 - 83972*x^5 - 198072*x^4 + 215936*x^3 + 70896*x^2 - 133952*x + 19264);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 29*x^17 - 32*x^16 + 201*x^15 - 718*x^14 + 847*x^13 + 988*x^12 - 1701*x^11 - 6256*x^10 + 18797*x^9 - 15492*x^8 - 45562*x^7 + 150977*x^6 - 83972*x^5 - 198072*x^4 + 215936*x^3 + 70896*x^2 - 133952*x + 19264)
 

\( x^{21} - 7 x^{20} + 21 x^{19} - 34 x^{18} + 29 x^{17} - 32 x^{16} + 201 x^{15} - 718 x^{14} + \cdots + 19264 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $21$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[3, 9]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-26160559119874379648562947375700703\) \(\medspace = -\,7^{17}\cdot 13^{18}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(43.54\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $7^{5/6}13^{6/7}\approx 45.60967255955715$
Ramified primes:   \(7\), \(13\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{-7}) \)
$\Aut(K/\Q)$:   $C_3$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{6}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{12}-\frac{1}{4}a^{10}-\frac{1}{4}a^{8}+\frac{1}{4}a^{6}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{13}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{172}a^{16}+\frac{19}{172}a^{15}-\frac{5}{86}a^{14}+\frac{15}{172}a^{13}-\frac{3}{43}a^{12}-\frac{11}{172}a^{11}-\frac{7}{43}a^{10}-\frac{13}{172}a^{9}+\frac{8}{43}a^{8}-\frac{3}{172}a^{7}+\frac{14}{43}a^{6}+\frac{11}{172}a^{5}+\frac{33}{86}a^{4}-\frac{13}{172}a^{3}+\frac{15}{172}a^{2}+\frac{18}{43}a$, $\frac{1}{172}a^{17}+\frac{4}{43}a^{15}-\frac{5}{86}a^{14}+\frac{1}{43}a^{13}+\frac{1}{86}a^{12}-\frac{17}{86}a^{11}-\frac{10}{43}a^{10}-\frac{11}{86}a^{9}+\frac{17}{86}a^{8}-\frac{4}{43}a^{7}+\frac{11}{86}a^{6}+\frac{18}{43}a^{5}-\frac{5}{43}a^{4}-\frac{39}{172}a^{3}-\frac{21}{43}a^{2}+\frac{2}{43}a$, $\frac{1}{62608}a^{18}-\frac{127}{62608}a^{17}-\frac{95}{62608}a^{16}+\frac{569}{31304}a^{15}-\frac{6431}{62608}a^{14}+\frac{426}{3913}a^{13}+\frac{2549}{62608}a^{12}+\frac{875}{4472}a^{11}+\frac{1357}{8944}a^{10}+\frac{627}{15652}a^{9}-\frac{901}{4816}a^{8}-\frac{825}{7826}a^{7}-\frac{2703}{62608}a^{6}+\frac{807}{2236}a^{5}+\frac{887}{4472}a^{4}+\frac{2935}{8944}a^{3}-\frac{165}{2236}a^{2}-\frac{205}{2236}a-\frac{5}{26}$, $\frac{1}{125216}a^{19}-\frac{1}{125216}a^{18}-\frac{81}{125216}a^{17}+\frac{11}{15652}a^{16}+\frac{5917}{125216}a^{15}-\frac{99}{1456}a^{14}-\frac{6411}{125216}a^{13}-\frac{11}{86}a^{12}-\frac{2783}{17888}a^{11}+\frac{1275}{62608}a^{10}+\frac{677}{2912}a^{9}-\frac{12491}{62608}a^{8}-\frac{27679}{125216}a^{7}-\frac{3057}{8944}a^{6}+\frac{2283}{8944}a^{5}-\frac{2549}{17888}a^{4}-\frac{2105}{8944}a^{3}-\frac{45}{344}a^{2}-\frac{3}{43}a-\frac{3}{26}$, $\frac{1}{20\cdots 88}a^{20}+\frac{39\cdots 11}{20\cdots 88}a^{19}+\frac{63\cdots 27}{20\cdots 88}a^{18}+\frac{15\cdots 17}{25\cdots 36}a^{17}-\frac{33\cdots 03}{20\cdots 88}a^{16}+\frac{30\cdots 95}{10\cdots 44}a^{15}-\frac{24\cdots 59}{20\cdots 88}a^{14}-\frac{84\cdots 09}{25\cdots 36}a^{13}+\frac{32\cdots 95}{20\cdots 88}a^{12}+\frac{12\cdots 83}{10\cdots 44}a^{11}-\frac{23\cdots 17}{20\cdots 88}a^{10}+\frac{15\cdots 77}{10\cdots 44}a^{9}+\frac{27\cdots 97}{20\cdots 88}a^{8}-\frac{22\cdots 83}{10\cdots 44}a^{7}-\frac{42\cdots 79}{10\cdots 44}a^{6}+\frac{13\cdots 67}{29\cdots 84}a^{5}+\frac{41\cdots 23}{14\cdots 92}a^{4}-\frac{19\cdots 31}{74\cdots 96}a^{3}+\frac{31\cdots 73}{92\cdots 62}a^{2}+\frac{86\cdots 89}{18\cdots 24}a-\frac{20\cdots 48}{10\cdots 17}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $11$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{17\cdots 73}{19\cdots 72}a^{20}+\frac{23\cdots 69}{39\cdots 44}a^{19}-\frac{79\cdots 61}{57\cdots 92}a^{18}+\frac{15\cdots 15}{39\cdots 44}a^{17}-\frac{17\cdots 64}{35\cdots 87}a^{16}+\frac{46\cdots 83}{39\cdots 44}a^{15}+\frac{53\cdots 43}{19\cdots 72}a^{14}+\frac{16\cdots 67}{39\cdots 44}a^{13}-\frac{46\cdots 94}{24\cdots 09}a^{12}+\frac{44\cdots 41}{39\cdots 44}a^{11}+\frac{11\cdots 35}{19\cdots 72}a^{10}-\frac{57\cdots 51}{39\cdots 44}a^{9}-\frac{40\cdots 77}{19\cdots 72}a^{8}+\frac{13\cdots 15}{39\cdots 44}a^{7}-\frac{35\cdots 51}{99\cdots 36}a^{6}-\frac{10\cdots 97}{71\cdots 74}a^{5}+\frac{18\cdots 77}{57\cdots 92}a^{4}+\frac{14\cdots 71}{71\cdots 74}a^{3}-\frac{34\cdots 91}{71\cdots 74}a^{2}-\frac{61\cdots 34}{35\cdots 87}a+\frac{18\cdots 37}{83\cdots 09}$, $\frac{88\cdots 11}{49\cdots 18}a^{20}-\frac{13\cdots 43}{39\cdots 44}a^{19}+\frac{73\cdots 45}{39\cdots 44}a^{18}-\frac{22\cdots 21}{57\cdots 92}a^{17}+\frac{83\cdots 69}{19\cdots 72}a^{16}-\frac{52\cdots 13}{57\cdots 92}a^{15}+\frac{29\cdots 47}{49\cdots 18}a^{14}-\frac{30\cdots 45}{57\cdots 92}a^{13}+\frac{29\cdots 25}{19\cdots 72}a^{12}-\frac{54\cdots 65}{39\cdots 44}a^{11}-\frac{44\cdots 39}{99\cdots 36}a^{10}-\frac{40\cdots 73}{39\cdots 44}a^{9}+\frac{99\cdots 25}{49\cdots 18}a^{8}-\frac{11\cdots 23}{39\cdots 44}a^{7}-\frac{24\cdots 51}{99\cdots 36}a^{6}+\frac{48\cdots 43}{28\cdots 96}a^{5}-\frac{14\cdots 61}{57\cdots 92}a^{4}-\frac{64\cdots 61}{35\cdots 87}a^{3}+\frac{62\cdots 13}{14\cdots 48}a^{2}-\frac{11\cdots 03}{35\cdots 87}a-\frac{11\cdots 73}{83\cdots 09}$, $\frac{16\cdots 25}{14\cdots 92}a^{20}-\frac{11\cdots 45}{14\cdots 92}a^{19}+\frac{15\cdots 05}{79\cdots 88}a^{18}-\frac{15\cdots 09}{64\cdots 34}a^{17}+\frac{10\cdots 43}{10\cdots 44}a^{16}-\frac{10\cdots 43}{51\cdots 72}a^{15}+\frac{22\cdots 63}{10\cdots 44}a^{14}-\frac{22\cdots 30}{32\cdots 17}a^{13}+\frac{34\cdots 53}{79\cdots 88}a^{12}+\frac{13\cdots 87}{74\cdots 96}a^{11}-\frac{12\cdots 05}{14\cdots 92}a^{10}-\frac{36\cdots 77}{39\cdots 44}a^{9}+\frac{15\cdots 95}{10\cdots 44}a^{8}-\frac{21\cdots 93}{51\cdots 72}a^{7}-\frac{32\cdots 09}{51\cdots 72}a^{6}+\frac{16\cdots 33}{11\cdots 84}a^{5}+\frac{30\cdots 33}{74\cdots 96}a^{4}-\frac{73\cdots 73}{28\cdots 96}a^{3}+\frac{10\cdots 22}{46\cdots 31}a^{2}+\frac{15\cdots 97}{92\cdots 62}a-\frac{18\cdots 25}{10\cdots 17}$, $\frac{15\cdots 37}{20\cdots 88}a^{20}-\frac{69\cdots 71}{15\cdots 76}a^{19}+\frac{31\cdots 63}{29\cdots 84}a^{18}-\frac{19\cdots 13}{14\cdots 92}a^{17}+\frac{18\cdots 95}{29\cdots 84}a^{16}-\frac{12\cdots 93}{74\cdots 96}a^{15}+\frac{27\cdots 97}{20\cdots 88}a^{14}-\frac{39\cdots 41}{10\cdots 44}a^{13}+\frac{37\cdots 91}{20\cdots 88}a^{12}+\frac{24\cdots 41}{25\cdots 36}a^{11}-\frac{30\cdots 29}{20\cdots 88}a^{10}-\frac{25\cdots 61}{51\cdots 72}a^{9}+\frac{17\cdots 61}{20\cdots 88}a^{8}-\frac{11\cdots 33}{64\cdots 34}a^{7}-\frac{37\cdots 05}{10\cdots 44}a^{6}+\frac{20\cdots 67}{29\cdots 84}a^{5}+\frac{77\cdots 93}{37\cdots 48}a^{4}-\frac{35\cdots 07}{28\cdots 96}a^{3}+\frac{44\cdots 93}{37\cdots 48}a^{2}+\frac{13\cdots 71}{18\cdots 24}a-\frac{27\cdots 97}{21\cdots 34}$, $\frac{13\cdots 75}{10\cdots 44}a^{20}-\frac{36\cdots 89}{51\cdots 72}a^{19}+\frac{13\cdots 57}{74\cdots 96}a^{18}-\frac{27\cdots 63}{10\cdots 44}a^{17}+\frac{30\cdots 39}{11\cdots 84}a^{16}-\frac{53\cdots 33}{10\cdots 44}a^{15}+\frac{24\cdots 63}{10\cdots 44}a^{14}-\frac{67\cdots 75}{10\cdots 44}a^{13}+\frac{46\cdots 75}{10\cdots 44}a^{12}+\frac{10\cdots 85}{10\cdots 44}a^{11}+\frac{34\cdots 45}{10\cdots 44}a^{10}-\frac{69\cdots 91}{10\cdots 44}a^{9}+\frac{13\cdots 51}{10\cdots 44}a^{8}-\frac{88\cdots 81}{10\cdots 44}a^{7}-\frac{24\cdots 15}{51\cdots 72}a^{6}+\frac{15\cdots 43}{14\cdots 92}a^{5}-\frac{10\cdots 15}{14\cdots 92}a^{4}-\frac{16\cdots 47}{18\cdots 24}a^{3}+\frac{85\cdots 67}{37\cdots 48}a^{2}-\frac{21\cdots 79}{18\cdots 24}a-\frac{10\cdots 07}{10\cdots 17}$, $\frac{46\cdots 75}{20\cdots 88}a^{20}-\frac{35\cdots 99}{22\cdots 68}a^{19}+\frac{94\cdots 47}{20\cdots 88}a^{18}-\frac{73\cdots 67}{10\cdots 44}a^{17}+\frac{11\cdots 03}{20\cdots 88}a^{16}-\frac{32\cdots 17}{51\cdots 72}a^{15}+\frac{92\cdots 59}{20\cdots 88}a^{14}-\frac{16\cdots 75}{10\cdots 44}a^{13}+\frac{35\cdots 53}{20\cdots 88}a^{12}+\frac{65\cdots 41}{25\cdots 36}a^{11}-\frac{10\cdots 33}{29\cdots 84}a^{10}-\frac{75\cdots 85}{51\cdots 72}a^{9}+\frac{83\cdots 51}{20\cdots 88}a^{8}-\frac{58\cdots 01}{19\cdots 72}a^{7}-\frac{11\cdots 49}{10\cdots 44}a^{6}+\frac{97\cdots 61}{29\cdots 84}a^{5}-\frac{53\cdots 79}{37\cdots 48}a^{4}-\frac{34\cdots 83}{74\cdots 96}a^{3}+\frac{15\cdots 47}{37\cdots 48}a^{2}+\frac{97\cdots 38}{46\cdots 31}a-\frac{30\cdots 79}{10\cdots 17}$, $\frac{51\cdots 01}{14\cdots 92}a^{20}-\frac{11\cdots 27}{74\cdots 96}a^{19}+\frac{68\cdots 05}{19\cdots 72}a^{18}-\frac{60\cdots 41}{10\cdots 44}a^{17}+\frac{98\cdots 79}{10\cdots 44}a^{16}-\frac{26\cdots 81}{10\cdots 44}a^{15}+\frac{59\cdots 21}{79\cdots 88}a^{14}-\frac{16\cdots 23}{10\cdots 44}a^{13}+\frac{10\cdots 61}{10\cdots 44}a^{12}-\frac{11\cdots 49}{14\cdots 92}a^{11}+\frac{12\cdots 65}{14\cdots 92}a^{10}-\frac{17\cdots 59}{10\cdots 44}a^{9}+\frac{28\cdots 41}{10\cdots 44}a^{8}-\frac{27\cdots 57}{10\cdots 44}a^{7}-\frac{30\cdots 37}{49\cdots 18}a^{6}+\frac{15\cdots 83}{14\cdots 92}a^{5}+\frac{10\cdots 45}{14\cdots 92}a^{4}+\frac{67\cdots 61}{74\cdots 96}a^{3}-\frac{21\cdots 51}{37\cdots 48}a^{2}-\frac{10\cdots 97}{92\cdots 62}a+\frac{57\cdots 67}{21\cdots 34}$, $\frac{28\cdots 31}{20\cdots 88}a^{20}-\frac{19\cdots 75}{20\cdots 88}a^{19}+\frac{54\cdots 65}{20\cdots 88}a^{18}-\frac{46\cdots 05}{12\cdots 68}a^{17}+\frac{35\cdots 27}{20\cdots 88}a^{16}-\frac{23\cdots 63}{10\cdots 44}a^{15}+\frac{43\cdots 47}{15\cdots 76}a^{14}-\frac{12\cdots 17}{12\cdots 68}a^{13}+\frac{17\cdots 97}{20\cdots 88}a^{12}+\frac{20\cdots 61}{10\cdots 44}a^{11}-\frac{43\cdots 79}{20\cdots 88}a^{10}-\frac{11\cdots 25}{10\cdots 44}a^{9}+\frac{53\cdots 99}{20\cdots 88}a^{8}-\frac{11\cdots 53}{10\cdots 44}a^{7}-\frac{80\cdots 29}{10\cdots 44}a^{6}+\frac{58\cdots 41}{29\cdots 84}a^{5}-\frac{22\cdots 99}{14\cdots 92}a^{4}-\frac{30\cdots 69}{74\cdots 96}a^{3}+\frac{42\cdots 21}{18\cdots 24}a^{2}+\frac{66\cdots 09}{18\cdots 24}a-\frac{32\cdots 69}{10\cdots 17}$, $\frac{68\cdots 93}{20\cdots 88}a^{20}-\frac{36\cdots 25}{20\cdots 88}a^{19}+\frac{71\cdots 47}{20\cdots 88}a^{18}-\frac{11\cdots 13}{51\cdots 72}a^{17}-\frac{31\cdots 83}{20\cdots 88}a^{16}-\frac{66\cdots 03}{10\cdots 44}a^{15}+\frac{11\cdots 69}{20\cdots 88}a^{14}-\frac{67\cdots 97}{51\cdots 72}a^{13}-\frac{92\cdots 89}{20\cdots 88}a^{12}+\frac{53\cdots 61}{10\cdots 44}a^{11}+\frac{55\cdots 51}{20\cdots 88}a^{10}-\frac{25\cdots 41}{10\cdots 44}a^{9}+\frac{39\cdots 17}{20\cdots 88}a^{8}+\frac{26\cdots 79}{10\cdots 44}a^{7}-\frac{16\cdots 95}{10\cdots 44}a^{6}+\frac{57\cdots 43}{29\cdots 84}a^{5}+\frac{43\cdots 97}{14\cdots 92}a^{4}-\frac{36\cdots 83}{74\cdots 96}a^{3}-\frac{62\cdots 49}{18\cdots 24}a^{2}+\frac{63\cdots 97}{18\cdots 24}a+\frac{21\cdots 35}{10\cdots 17}$, $\frac{37\cdots 99}{20\cdots 88}a^{20}-\frac{49\cdots 15}{20\cdots 88}a^{19}-\frac{71\cdots 75}{20\cdots 88}a^{18}+\frac{82\cdots 09}{51\cdots 72}a^{17}-\frac{71\cdots 53}{20\cdots 88}a^{16}+\frac{42\cdots 91}{10\cdots 44}a^{15}-\frac{60\cdots 53}{20\cdots 88}a^{14}+\frac{60\cdots 39}{51\cdots 72}a^{13}-\frac{13\cdots 15}{20\cdots 88}a^{12}+\frac{12\cdots 35}{10\cdots 44}a^{11}+\frac{30\cdots 97}{20\cdots 88}a^{10}-\frac{20\cdots 43}{10\cdots 44}a^{9}-\frac{61\cdots 29}{20\cdots 88}a^{8}+\frac{15\cdots 85}{10\cdots 44}a^{7}-\frac{28\cdots 57}{10\cdots 44}a^{6}-\frac{15\cdots 23}{29\cdots 84}a^{5}+\frac{18\cdots 99}{14\cdots 92}a^{4}-\frac{99\cdots 31}{74\cdots 96}a^{3}-\frac{10\cdots 91}{18\cdots 24}a^{2}+\frac{20\cdots 41}{18\cdots 24}a-\frac{14\cdots 54}{10\cdots 17}$, $\frac{19\cdots 13}{15\cdots 76}a^{20}-\frac{18\cdots 03}{20\cdots 88}a^{19}+\frac{54\cdots 29}{20\cdots 88}a^{18}-\frac{44\cdots 53}{10\cdots 44}a^{17}+\frac{83\cdots 69}{20\cdots 88}a^{16}-\frac{32\cdots 15}{64\cdots 34}a^{15}+\frac{55\cdots 61}{20\cdots 88}a^{14}-\frac{94\cdots 63}{10\cdots 44}a^{13}+\frac{22\cdots 59}{20\cdots 88}a^{12}+\frac{42\cdots 35}{39\cdots 44}a^{11}-\frac{36\cdots 61}{20\cdots 88}a^{10}-\frac{10\cdots 11}{12\cdots 68}a^{9}+\frac{47\cdots 61}{20\cdots 88}a^{8}-\frac{10\cdots 53}{51\cdots 72}a^{7}-\frac{55\cdots 85}{10\cdots 44}a^{6}+\frac{53\cdots 43}{29\cdots 84}a^{5}-\frac{75\cdots 01}{74\cdots 96}a^{4}-\frac{62\cdots 55}{28\cdots 96}a^{3}+\frac{81\cdots 49}{37\cdots 48}a^{2}+\frac{19\cdots 51}{18\cdots 24}a-\frac{28\cdots 69}{21\cdots 34}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3123124290.4668374 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{9}\cdot 3123124290.4668374 \cdot 1}{2\cdot\sqrt{26160559119874379648562947375700703}}\cr\approx \mathstrut & 1.17881204229849 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 29*x^17 - 32*x^16 + 201*x^15 - 718*x^14 + 847*x^13 + 988*x^12 - 1701*x^11 - 6256*x^10 + 18797*x^9 - 15492*x^8 - 45562*x^7 + 150977*x^6 - 83972*x^5 - 198072*x^4 + 215936*x^3 + 70896*x^2 - 133952*x + 19264) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 29*x^17 - 32*x^16 + 201*x^15 - 718*x^14 + 847*x^13 + 988*x^12 - 1701*x^11 - 6256*x^10 + 18797*x^9 - 15492*x^8 - 45562*x^7 + 150977*x^6 - 83972*x^5 - 198072*x^4 + 215936*x^3 + 70896*x^2 - 133952*x + 19264, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 29*x^17 - 32*x^16 + 201*x^15 - 718*x^14 + 847*x^13 + 988*x^12 - 1701*x^11 - 6256*x^10 + 18797*x^9 - 15492*x^8 - 45562*x^7 + 150977*x^6 - 83972*x^5 - 198072*x^4 + 215936*x^3 + 70896*x^2 - 133952*x + 19264); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^21 - 7*x^20 + 21*x^19 - 34*x^18 + 29*x^17 - 32*x^16 + 201*x^15 - 718*x^14 + 847*x^13 + 988*x^12 - 1701*x^11 - 6256*x^10 + 18797*x^9 - 15492*x^8 - 45562*x^7 + 150977*x^6 - 83972*x^5 - 198072*x^4 + 215936*x^3 + 70896*x^2 - 133952*x + 19264); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$F_7$ (as 21T4):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 42
The 7 conjugacy class representatives for $F_7$
Character table for $F_7$

Intermediate fields

\(\Q(\zeta_{7})^+\), 7.1.81124178863.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 42
Degree 7 sibling: 7.1.81124178863.1
Degree 14 sibling: deg 14
Minimal sibling: 7.1.81124178863.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.3.0.1}{3} }^{7}$ ${\href{/padicField/3.6.0.1}{6} }^{3}{,}\,{\href{/padicField/3.3.0.1}{3} }$ ${\href{/padicField/5.6.0.1}{6} }^{3}{,}\,{\href{/padicField/5.3.0.1}{3} }$ R ${\href{/padicField/11.3.0.1}{3} }^{7}$ R ${\href{/padicField/17.6.0.1}{6} }^{3}{,}\,{\href{/padicField/17.3.0.1}{3} }$ ${\href{/padicField/19.6.0.1}{6} }^{3}{,}\,{\href{/padicField/19.3.0.1}{3} }$ ${\href{/padicField/23.3.0.1}{3} }^{7}$ ${\href{/padicField/29.7.0.1}{7} }^{3}$ ${\href{/padicField/31.6.0.1}{6} }^{3}{,}\,{\href{/padicField/31.3.0.1}{3} }$ ${\href{/padicField/37.3.0.1}{3} }^{7}$ ${\href{/padicField/41.2.0.1}{2} }^{9}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ ${\href{/padicField/43.1.0.1}{1} }^{21}$ ${\href{/padicField/47.6.0.1}{6} }^{3}{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.3.0.1}{3} }^{7}$ ${\href{/padicField/59.6.0.1}{6} }^{3}{,}\,{\href{/padicField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display 7.1.3.2a1.1$x^{3} + 7$$3$$1$$2$$C_3$$$[\ ]_{3}$$
7.1.6.5a1.1$x^{6} + 7$$6$$1$$5$$C_6$$$[\ ]_{6}$$
7.1.6.5a1.1$x^{6} + 7$$6$$1$$5$$C_6$$$[\ ]_{6}$$
7.1.6.5a1.1$x^{6} + 7$$6$$1$$5$$C_6$$$[\ ]_{6}$$
\(13\) Copy content Toggle raw display 13.1.7.6a1.1$x^{7} + 13$$7$$1$$6$$D_{7}$$$[\ ]_{7}^{2}$$
13.1.7.6a1.1$x^{7} + 13$$7$$1$$6$$D_{7}$$$[\ ]_{7}^{2}$$
13.1.7.6a1.1$x^{7} + 13$$7$$1$$6$$D_{7}$$$[\ ]_{7}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)