Normalized defining polynomial
\( x^{21} - 7 x^{20} + 21 x^{19} - 34 x^{18} + 29 x^{17} - 32 x^{16} + 201 x^{15} - 718 x^{14} + 847 x^{13} + 988 x^{12} - 1701 x^{11} - 6256 x^{10} + 18797 x^{9} - 15492 x^{8} - 45562 x^{7} + 150977 x^{6} - 83972 x^{5} - 198072 x^{4} + 215936 x^{3} + 70896 x^{2} - 133952 x + 19264 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-26160559119874379648562947375700703=-\,7^{17}\cdot 13^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{172} a^{16} + \frac{19}{172} a^{15} - \frac{5}{86} a^{14} + \frac{15}{172} a^{13} - \frac{3}{43} a^{12} - \frac{11}{172} a^{11} - \frac{7}{43} a^{10} - \frac{13}{172} a^{9} + \frac{8}{43} a^{8} - \frac{3}{172} a^{7} + \frac{14}{43} a^{6} + \frac{11}{172} a^{5} + \frac{33}{86} a^{4} - \frac{13}{172} a^{3} + \frac{15}{172} a^{2} + \frac{18}{43} a$, $\frac{1}{172} a^{17} + \frac{4}{43} a^{15} - \frac{5}{86} a^{14} + \frac{1}{43} a^{13} + \frac{1}{86} a^{12} - \frac{17}{86} a^{11} - \frac{10}{43} a^{10} - \frac{11}{86} a^{9} + \frac{17}{86} a^{8} - \frac{4}{43} a^{7} + \frac{11}{86} a^{6} + \frac{18}{43} a^{5} - \frac{5}{43} a^{4} - \frac{39}{172} a^{3} - \frac{21}{43} a^{2} + \frac{2}{43} a$, $\frac{1}{62608} a^{18} - \frac{127}{62608} a^{17} - \frac{95}{62608} a^{16} + \frac{569}{31304} a^{15} - \frac{6431}{62608} a^{14} + \frac{426}{3913} a^{13} + \frac{2549}{62608} a^{12} + \frac{875}{4472} a^{11} + \frac{1357}{8944} a^{10} + \frac{627}{15652} a^{9} - \frac{901}{4816} a^{8} - \frac{825}{7826} a^{7} - \frac{2703}{62608} a^{6} + \frac{807}{2236} a^{5} + \frac{887}{4472} a^{4} + \frac{2935}{8944} a^{3} - \frac{165}{2236} a^{2} - \frac{205}{2236} a - \frac{5}{26}$, $\frac{1}{125216} a^{19} - \frac{1}{125216} a^{18} - \frac{81}{125216} a^{17} + \frac{11}{15652} a^{16} + \frac{5917}{125216} a^{15} - \frac{99}{1456} a^{14} - \frac{6411}{125216} a^{13} - \frac{11}{86} a^{12} - \frac{2783}{17888} a^{11} + \frac{1275}{62608} a^{10} + \frac{677}{2912} a^{9} - \frac{12491}{62608} a^{8} - \frac{27679}{125216} a^{7} - \frac{3057}{8944} a^{6} + \frac{2283}{8944} a^{5} - \frac{2549}{17888} a^{4} - \frac{2105}{8944} a^{3} - \frac{45}{344} a^{2} - \frac{3}{43} a - \frac{3}{26}$, $\frac{1}{207887600403310915083504121019002688} a^{20} + \frac{392226377616737257057298949711}{207887600403310915083504121019002688} a^{19} + \frac{632784562454770997269422143127}{207887600403310915083504121019002688} a^{18} + \frac{15952935065432715655080603828417}{25985950050413864385438015127375336} a^{17} - \frac{332137251071673234955476342776003}{207887600403310915083504121019002688} a^{16} + \frac{3044875649005602203659034727579795}{103943800201655457541752060509501344} a^{15} - \frac{24428493743126974352697382943679659}{207887600403310915083504121019002688} a^{14} - \frac{84082387668142479495659896576209}{25985950050413864385438015127375336} a^{13} + \frac{32366112435113442001476838909474295}{207887600403310915083504121019002688} a^{12} + \frac{12251982317273470162946899269101583}{103943800201655457541752060509501344} a^{11} - \frac{23257761248461243945486238587440217}{207887600403310915083504121019002688} a^{10} + \frac{15067422180511387988774606712349977}{103943800201655457541752060509501344} a^{9} + \frac{27565363643128725524822981796298497}{207887600403310915083504121019002688} a^{8} - \frac{22532802815756973078037141340242083}{103943800201655457541752060509501344} a^{7} - \frac{42706811753240615636602763095601379}{103943800201655457541752060509501344} a^{6} + \frac{1393114630550789298247373731340867}{29698228629044416440500588717000384} a^{5} + \frac{419712675581573610631503635170123}{14849114314522208220250294358500192} a^{4} - \frac{1952005121588922363008244429807531}{7424557157261104110125147179250096} a^{3} + \frac{314875157617316861394023340763673}{928069644657638013765643397406262} a^{2} + \frac{865297688965495029352818652672789}{1856139289315276027531286794812524} a - \frac{2035339649120000948703490343148}{10791507496019046671693527876817}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3123124290.4668374 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.1.81124178863.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 7 sibling: | data not computed |
| Degree 14 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{21}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $13$ | 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ |
| 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ | |
| 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ |