Normalized defining polynomial
\( x^{21} - 7 x^{20} + 21 x^{19} - 34 x^{18} - 23 x^{17} - 58 x^{16} - 59 x^{15} + 660 x^{14} - 427 x^{13} - 1196 x^{12} - 8526 x^{11} - 10884 x^{10} + 6174 x^{9} + 21246 x^{8} + 68396 x^{7} + 67348 x^{6} + 39606 x^{5} + 6041 x^{4} - 9224 x^{3} - 6766 x^{2} - 1859 x - 197 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-26160559119874379648562947375700703=-\,7^{17}\cdot 13^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{13} a^{18} - \frac{2}{13} a^{17} - \frac{6}{13} a^{16} + \frac{4}{13} a^{15} + \frac{5}{13} a^{14} - \frac{6}{13} a^{13} + \frac{1}{13} a^{12} + \frac{1}{13} a^{11} - \frac{6}{13} a^{10} - \frac{5}{13} a^{8} + \frac{2}{13} a^{7} + \frac{3}{13} a^{6} - \frac{3}{13} a^{5} + \frac{5}{13} a^{4} + \frac{4}{13} a^{3} - \frac{3}{13} a^{2} + \frac{5}{13} a - \frac{3}{13}$, $\frac{1}{13} a^{19} + \frac{3}{13} a^{17} + \frac{5}{13} a^{16} + \frac{4}{13} a^{14} + \frac{2}{13} a^{13} + \frac{3}{13} a^{12} - \frac{4}{13} a^{11} + \frac{1}{13} a^{10} - \frac{5}{13} a^{9} + \frac{5}{13} a^{8} - \frac{6}{13} a^{7} + \frac{3}{13} a^{6} - \frac{1}{13} a^{5} + \frac{1}{13} a^{4} + \frac{5}{13} a^{3} - \frac{1}{13} a^{2} - \frac{6}{13} a - \frac{6}{13}$, $\frac{1}{8728484183488973500083225987418901314271780150617} a^{20} + \frac{206186179102524935913399212420976518492439748125}{8728484183488973500083225987418901314271780150617} a^{19} - \frac{217123057926102928076341759994523435589533366260}{8728484183488973500083225987418901314271780150617} a^{18} + \frac{2485282999112624764909867459578661267302433726752}{8728484183488973500083225987418901314271780150617} a^{17} - \frac{2049717614867957133495859999049385058072098366262}{8728484183488973500083225987418901314271780150617} a^{16} - \frac{260635711737820377778996852748109715946483768997}{8728484183488973500083225987418901314271780150617} a^{15} + \frac{3230086743770466296017396501511912720851817704170}{8728484183488973500083225987418901314271780150617} a^{14} - \frac{1037593761370734432166838776191519344518209523384}{8728484183488973500083225987418901314271780150617} a^{13} - \frac{29139645733351683015585967888698053992634348764}{212889858133877402441054292376070763762726345137} a^{12} - \frac{3917425866957165871373675776360954571811294409479}{8728484183488973500083225987418901314271780150617} a^{11} + \frac{360341192719311971398890849394243336748730203869}{8728484183488973500083225987418901314271780150617} a^{10} - \frac{2760825539535324990196770755911655859637233051099}{8728484183488973500083225987418901314271780150617} a^{9} - \frac{3958761303786076667890850065520306515066311681667}{8728484183488973500083225987418901314271780150617} a^{8} + \frac{2646839771330085376618970585126239169767547584568}{8728484183488973500083225987418901314271780150617} a^{7} + \frac{4163713763368778644248759951595367532721906681336}{8728484183488973500083225987418901314271780150617} a^{6} - \frac{137903915239731906703450616098749428495735753020}{8728484183488973500083225987418901314271780150617} a^{5} - \frac{3044412700288136509356731580539964212698402374721}{8728484183488973500083225987418901314271780150617} a^{4} + \frac{1360408169086025907394724495377542890227636128747}{8728484183488973500083225987418901314271780150617} a^{3} + \frac{3397214074909217255791209280142718582562852097}{671421860268382576929478922109146254943983088509} a^{2} - \frac{1099119051645533791193511544721699277918646151359}{8728484183488973500083225987418901314271780150617} a - \frac{9621143102150928689124079776584090352236610249}{44307026312126769035955461865070565047064873861}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 936748793.4645762 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times D_7$ (as 21T3):
| A solvable group of order 42 |
| The 15 conjugacy class representatives for $C_3\times D_7$ |
| Character table for $C_3\times D_7$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.1.1655595487.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | $21$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $13$ | 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ |
| 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ | |
| 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ |