Normalized defining polynomial
\( x^{21} - 8 x^{20} - 76 x^{19} + 884 x^{18} + 1041 x^{17} - 38604 x^{16} + 74646 x^{15} + 796788 x^{14} - 3559335 x^{13} - 5594078 x^{12} + 65454625 x^{11} - 75134674 x^{10} - 526445392 x^{9} + 1767437868 x^{8} + 294495843 x^{7} - 11518426413 x^{6} + 21096865710 x^{5} + 6876151449 x^{4} - 81727980749 x^{3} + 134917517464 x^{2} - 101919304966 x + 31099656773 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2571214312996980646474746727059902452712523=-\,3^{25}\cdot 13^{2}\cdot 73^{6}\cdot 3529^{2}\cdot 97609^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $104.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 73, 3529, 97609$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{2}{9} a^{2} - \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{9} - \frac{1}{3} a^{6} - \frac{1}{9} a^{3} + \frac{2}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{10} + \frac{1}{3} a^{5} - \frac{4}{9} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{27} a^{14} - \frac{1}{27} a^{13} + \frac{1}{27} a^{12} - \frac{1}{27} a^{11} + \frac{1}{27} a^{10} - \frac{1}{27} a^{9} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{5}{27} a^{5} + \frac{4}{27} a^{4} + \frac{5}{27} a^{3} - \frac{2}{27} a^{2} - \frac{7}{27} a - \frac{2}{27}$, $\frac{1}{27} a^{15} - \frac{4}{27} a^{9} + \frac{2}{27} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{2}{27}$, $\frac{1}{27} a^{16} - \frac{4}{27} a^{10} + \frac{2}{27} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{9} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{2}{27} a$, $\frac{1}{27} a^{17} - \frac{1}{27} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{2}{27} a^{8} + \frac{1}{3} a^{6} + \frac{4}{9} a^{5} + \frac{1}{3} a^{4} + \frac{13}{27} a^{2} - \frac{2}{9} a - \frac{4}{9}$, $\frac{1}{27} a^{18} - \frac{1}{27} a^{12} - \frac{4}{27} a^{9} - \frac{2}{9} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{4}{27} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{2}{9}$, $\frac{1}{81} a^{19} + \frac{1}{81} a^{17} + \frac{1}{81} a^{16} + \frac{1}{81} a^{15} + \frac{1}{81} a^{14} + \frac{4}{81} a^{13} + \frac{1}{81} a^{12} + \frac{4}{81} a^{11} - \frac{1}{81} a^{10} + \frac{13}{81} a^{9} + \frac{8}{81} a^{8} - \frac{10}{81} a^{7} + \frac{8}{81} a^{6} - \frac{37}{81} a^{5} - \frac{4}{81} a^{4} + \frac{17}{81} a^{3} + \frac{23}{81} a^{2} + \frac{1}{9} a - \frac{40}{81}$, $\frac{1}{3900527917229866766416791609544236867551164008630206409} a^{20} + \frac{4929044284931672109223864525690111963561857165658573}{3900527917229866766416791609544236867551164008630206409} a^{19} + \frac{36404492144580453148328700631388502736222844317819945}{3900527917229866766416791609544236867551164008630206409} a^{18} - \frac{14976435957258658566012432699983274069016868804205514}{3900527917229866766416791609544236867551164008630206409} a^{17} - \frac{49154237933999979321024771149630306203790176100612494}{3900527917229866766416791609544236867551164008630206409} a^{16} - \frac{18696654282550362808043517469740083561625299312218186}{3900527917229866766416791609544236867551164008630206409} a^{15} + \frac{11880428000564785662900220071556700570406061572513095}{3900527917229866766416791609544236867551164008630206409} a^{14} + \frac{170795749846740875600304823129367344750900631231102264}{3900527917229866766416791609544236867551164008630206409} a^{13} - \frac{56666183471428358480753313747716326912653663152974465}{3900527917229866766416791609544236867551164008630206409} a^{12} - \frac{18046357713047182395085784193160247585373801328619999}{433391990803318529601865734393804096394573778736689601} a^{11} - \frac{1186716449003600176275425283067603325093480268987329}{11112615148803039220560659856251387087040353300940759} a^{10} + \frac{196918923841997037239697094191785127860020712616918031}{1300175972409955588805597203181412289183721336210068803} a^{9} - \frac{262106032561585677245404601095775906709171462338324639}{3900527917229866766416791609544236867551164008630206409} a^{8} + \frac{432999710269013268457774035352715423794239153839258944}{3900527917229866766416791609544236867551164008630206409} a^{7} + \frac{13399748338423981018205723087017277890757869367854453}{300040609017682058955137816118787451350089539125400493} a^{6} - \frac{75557471985654117027609804076135859973312439635669869}{300040609017682058955137816118787451350089539125400493} a^{5} + \frac{484867126950025012853679687752912333273485999231580095}{3900527917229866766416791609544236867551164008630206409} a^{4} - \frac{1589174724823145300278805179245656862521116361479753943}{3900527917229866766416791609544236867551164008630206409} a^{3} - \frac{628056020991177205161781596433740690256220246276388832}{3900527917229866766416791609544236867551164008630206409} a^{2} - \frac{361573138773474736219580256249073077467001731465361982}{3900527917229866766416791609544236867551164008630206409} a - \frac{1391691984019837649661647254989237731064415227437357056}{3900527917229866766416791609544236867551164008630206409}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4079341007060 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 11022480 |
| The 150 conjugacy class representatives for t21n140 are not computed |
| Character table for t21n140 is not computed |
Intermediate fields
| 7.3.3884841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.12.0.1 | $x^{12} + x^{2} - x + 2$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $73$ | 73.3.0.1 | $x^{3} - x + 14$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 73.3.0.1 | $x^{3} - x + 14$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 73.3.0.1 | $x^{3} - x + 14$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 73.3.0.1 | $x^{3} - x + 14$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 73.9.6.1 | $x^{9} + 3066 x^{6} + 3128123 x^{3} + 1067462648$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 3529 | Data not computed | ||||||
| 97609 | Data not computed | ||||||