Normalized defining polynomial
\( x^{21} - 24 x^{19} - 34 x^{18} + 9 x^{17} + 480 x^{16} + 2410 x^{15} + 2646 x^{14} - 453 x^{13} - 31052 x^{12} + 16326 x^{11} - 187728 x^{10} - 267343 x^{9} + 719244 x^{8} - 6331761 x^{7} - 8237756 x^{6} - 12927024 x^{5} - 9316032 x^{4} - 7774096 x^{3} - 4321152 x^{2} - 1440384 x - 480128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-241787774691530742888323503970893214367744=-\,2^{14}\cdot 3^{28}\cdot 11^{4}\cdot 31^{2}\cdot 71^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 31, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{14} + \frac{1}{8} a^{13} + \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{3}{8} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{176} a^{18} + \frac{5}{44} a^{16} - \frac{17}{88} a^{15} + \frac{9}{176} a^{14} + \frac{5}{22} a^{13} - \frac{5}{88} a^{12} + \frac{3}{88} a^{11} - \frac{13}{176} a^{10} + \frac{3}{44} a^{9} - \frac{43}{88} a^{8} + \frac{4}{11} a^{7} - \frac{87}{176} a^{6} - \frac{17}{44} a^{5} + \frac{59}{176} a^{4} - \frac{19}{44} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{352} a^{19} + \frac{5}{88} a^{17} - \frac{17}{176} a^{16} + \frac{9}{352} a^{15} + \frac{5}{44} a^{14} - \frac{5}{176} a^{13} - \frac{85}{176} a^{12} - \frac{13}{352} a^{11} - \frac{41}{88} a^{10} - \frac{43}{176} a^{9} + \frac{2}{11} a^{8} + \frac{89}{352} a^{7} + \frac{27}{88} a^{6} + \frac{59}{352} a^{5} - \frac{19}{88} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{5864884856475501191691510930878008738910984238790424390696861961138246976} a^{20} - \frac{353827810257263773094205494406682152412710205277630955563275928126527}{266585675294340963258705042312636760859590192672292017758948270960829408} a^{19} - \frac{20683099856367373200094244496810891464753802161615323824712716189241}{66646418823585240814676260578159190214897548168073004439737067740207352} a^{18} + \frac{172789137962370814148532973017203673950968963933106996881093794343943779}{2932442428237750595845755465439004369455492119395212195348430980569123488} a^{17} + \frac{176574985618891853460909391142916552526806907461199763436365351563691405}{5864884856475501191691510930878008738910984238790424390696861961138246976} a^{16} + \frac{4760888622649151122562950586926300627904689987040355288302266149306441}{27406004002221968185474350144289760462200860928927216778957298883823584} a^{15} - \frac{154415351431772011521108186962591731532373292233434616742561486741561667}{2932442428237750595845755465439004369455492119395212195348430980569123488} a^{14} + \frac{930126856763400245788232505217500762509565253008752344783248183909290085}{2932442428237750595845755465439004369455492119395212195348430980569123488} a^{13} + \frac{61953974192010338436471743730220226468655423465201783995003984038141965}{533171350588681926517410084625273521719180385344584035517896541921658816} a^{12} + \frac{342530772626825662975906407804891600234894725251424481538783729125704267}{2932442428237750595845755465439004369455492119395212195348430980569123488} a^{11} + \frac{649658410055975713442629783494945016470413053005160450723431390943296663}{2932442428237750595845755465439004369455492119395212195348430980569123488} a^{10} - \frac{776907263533350979778888630473766407000624277944101378486145315012669}{2836017822280223013390479173538688945314789283747787422967534797455632} a^{9} + \frac{2565844394111230526370520059493935917753287348005914758249263515067826369}{5864884856475501191691510930878008738910984238790424390696861961138246976} a^{8} + \frac{3936478730294023297537595687699173529452778019234040194284455407205657}{2932442428237750595845755465439004369455492119395212195348430980569123488} a^{7} - \frac{921317867650931288002134055445106088615066041403452488105944627342673993}{5864884856475501191691510930878008738910984238790424390696861961138246976} a^{6} - \frac{384269982644139037213299042501306830745462002943074989836460038800527261}{2932442428237750595845755465439004369455492119395212195348430980569123488} a^{5} - \frac{244626366769494689025343516721794261410750056029829882409902038242646009}{733110607059437648961438866359751092363873029848803048837107745142280872} a^{4} - \frac{298680448399256951326861688106290424769743542838226155401124769858362927}{733110607059437648961438866359751092363873029848803048837107745142280872} a^{3} - \frac{3082034485524576720745201575781988285783069370895819091768030339241983}{16661604705896310203669065144539797553724387042018251109934266935051838} a^{2} + \frac{3564250515079240490425163057028021217712354376126154304320586844020848}{8330802352948155101834532572269898776862193521009125554967133467525919} a - \frac{1265770186201900440832063041396440160471778819486564379285970561570015}{8330802352948155101834532572269898776862193521009125554967133467525919}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 870032205949 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 171 conjugacy class representatives for t21n122 are not computed |
| Character table for t21n122 is not computed |
Intermediate fields
| 7.1.357911.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | $21$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | $21$ | R | $21$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.36 | $x^{14} - x^{12} + 2 x^{10} + 2 x^{9} + 2 x^{7} + 2 x^{6} + 2 x^{5} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.6.0.1 | $x^{6} - 2 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $71$ | 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 71.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.6.3.2 | $x^{6} - 5041 x^{2} + 715822$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 71.6.3.2 | $x^{6} - 5041 x^{2} + 715822$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |