Normalized defining polynomial
\( x^{21} - 7 x^{20} + 23 x^{19} - 59 x^{18} + 159 x^{17} - 439 x^{16} + 1181 x^{15} - 2881 x^{14} + 6088 x^{13} - 11638 x^{12} + 20752 x^{11} - 35784 x^{10} + 61024 x^{9} - 90396 x^{8} + 95820 x^{7} - 47992 x^{6} - 56240 x^{5} + 172576 x^{4} - 215232 x^{3} + 149248 x^{2} - 53248 x + 5888 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-240111817160475801918451219385024512=-\,2^{18}\cdot 7^{17}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{12} a^{15} + \frac{1}{12} a^{14} - \frac{1}{12} a^{13} - \frac{1}{12} a^{12} - \frac{1}{4} a^{11} - \frac{1}{12} a^{10} - \frac{1}{4} a^{9} - \frac{1}{12} a^{8} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{24} a^{16} - \frac{1}{24} a^{15} - \frac{1}{8} a^{14} - \frac{5}{24} a^{13} + \frac{5}{24} a^{12} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} + \frac{5}{24} a^{9} + \frac{1}{12} a^{8} - \frac{5}{12} a^{7} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3}$, $\frac{1}{48} a^{17} - \frac{1}{48} a^{16} + \frac{1}{48} a^{15} - \frac{1}{48} a^{14} - \frac{11}{48} a^{13} - \frac{5}{48} a^{12} + \frac{11}{48} a^{11} - \frac{11}{48} a^{10} + \frac{1}{24} a^{9} + \frac{5}{24} a^{8} - \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{5}{12} a^{4} + \frac{1}{12} a^{3} + \frac{1}{3}$, $\frac{1}{96} a^{18} - \frac{1}{96} a^{17} + \frac{1}{96} a^{16} + \frac{1}{32} a^{15} - \frac{7}{96} a^{14} - \frac{3}{32} a^{13} - \frac{17}{96} a^{12} + \frac{1}{96} a^{11} + \frac{11}{48} a^{10} + \frac{11}{48} a^{9} - \frac{1}{24} a^{8} + \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{7}{24} a^{5} + \frac{3}{8} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3}$, $\frac{1}{192} a^{19} - \frac{1}{192} a^{18} + \frac{1}{192} a^{17} + \frac{1}{64} a^{16} - \frac{7}{192} a^{15} - \frac{3}{64} a^{14} - \frac{17}{192} a^{13} - \frac{47}{192} a^{12} + \frac{11}{96} a^{11} + \frac{11}{96} a^{10} - \frac{1}{48} a^{9} - \frac{1}{12} a^{8} - \frac{5}{12} a^{7} + \frac{17}{48} a^{6} + \frac{3}{16} a^{5} + \frac{1}{6} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a$, $\frac{1}{25474224818440218834187149304795008} a^{20} - \frac{7657964077075995812137281475609}{25474224818440218834187149304795008} a^{19} - \frac{1265417830430558361948601558873}{499494604283141545768375476564608} a^{18} - \frac{75002931684064734666633732767297}{25474224818440218834187149304795008} a^{17} - \frac{344186466298958211172069173015587}{25474224818440218834187149304795008} a^{16} + \frac{516224437399090061356563408446659}{25474224818440218834187149304795008} a^{15} + \frac{551210090114284205407746072233649}{8491408272813406278062383101598336} a^{14} - \frac{1085494454887263683701059893064961}{8491408272813406278062383101598336} a^{13} + \frac{1631754294274461823328485298158297}{12737112409220109417093574652397504} a^{12} - \frac{32915215670323306194366157291613}{4245704136406703139031191550799168} a^{11} - \frac{431562368110253033998208353815297}{2122852068203351569515595775399584} a^{10} - \frac{531406220125017051429617759681905}{3184278102305027354273393663099376} a^{9} + \frac{6357301050848539812423602580373}{46827619151544519915785200927932} a^{8} + \frac{65373000443897700442841433980747}{2122852068203351569515595775399584} a^{7} + \frac{778586044997643227665467794661745}{6368556204610054708546787326198752} a^{6} - \frac{4681237890937883959272519760189}{93655238303089039831570401855864} a^{5} + \frac{298336856009268365100884306197033}{796069525576256838568348415774844} a^{4} + \frac{103112661151602647289643906772041}{265356508525418946189449471924948} a^{3} - \frac{184156938459282797102981316380699}{398034762788128419284174207887422} a^{2} + \frac{68472492952189331878644078464782}{199017381394064209642087103943711} a + \frac{3144481111103523075001196853544}{66339127131354736547362367981237}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5199297416.013432 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.8281.1, 7.1.30721582528.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | $21$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |