Normalized defining polynomial
\( x^{21} - 7 x^{20} + 27 x^{19} - 19 x^{18} - 185 x^{17} + 661 x^{16} + 75 x^{15} - 4907 x^{14} + 5248 x^{13} + 17006 x^{12} - 24814 x^{11} - 42058 x^{10} + 51928 x^{9} + 130100 x^{8} - 180216 x^{7} - 69004 x^{6} + 106640 x^{5} + 97712 x^{4} - 82628 x^{3} - 16944 x^{2} + 21492 x + 2484 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-240111817160475801918451219385024512=-\,2^{18}\cdot 7^{17}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{14}$, $\frac{1}{12} a^{19} - \frac{1}{12} a^{18} - \frac{1}{12} a^{16} + \frac{1}{12} a^{15} + \frac{1}{12} a^{14} + \frac{1}{12} a^{12} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{29095435539320506827471415385070792544488057380922024} a^{20} + \frac{5380435712785759783525725507648403165653014140091}{7273858884830126706867853846267698136122014345230506} a^{19} + \frac{19448307112203556658194931785962478676994060286559}{9698478513106835609157138461690264181496019126974008} a^{18} + \frac{728550894244701176335802737271268796002255122582567}{7273858884830126706867853846267698136122014345230506} a^{17} + \frac{2230544872073638941585407076732347696777649319689127}{29095435539320506827471415385070792544488057380922024} a^{16} - \frac{168337755665081324440496239518988620619162918763878}{3636929442415063353433926923133849068061007172615253} a^{15} - \frac{1659466749293369272045576707576007039038015598021537}{9698478513106835609157138461690264181496019126974008} a^{14} + \frac{17014856029212287021238408907573560868073310664094}{3636929442415063353433926923133849068061007172615253} a^{13} - \frac{659375330277154898190004226731994815420762827522055}{3636929442415063353433926923133849068061007172615253} a^{12} + \frac{816514846491064762274370972654504459687776363375497}{3636929442415063353433926923133849068061007172615253} a^{11} + \frac{1226363672188458845033871566895797712026007846737755}{14547717769660253413735707692535396272244028690461012} a^{10} - \frac{592547703578954240156481910153029108537857653950584}{3636929442415063353433926923133849068061007172615253} a^{9} + \frac{257918894823776539010024141121282518928986773988117}{3636929442415063353433926923133849068061007172615253} a^{8} - \frac{3335142137695159699323792165288853761056688925948093}{7273858884830126706867853846267698136122014345230506} a^{7} - \frac{589537620677092345382048687251947549496353972894278}{1212309814138354451144642307711283022687002390871751} a^{6} - \frac{418447724146271069660490896642051649978731876276531}{3636929442415063353433926923133849068061007172615253} a^{5} + \frac{1661206735511957641850522109518277802425118957022561}{7273858884830126706867853846267698136122014345230506} a^{4} - \frac{3165795860971712825036514859742813694746266396415755}{7273858884830126706867853846267698136122014345230506} a^{3} - \frac{606276159843357499791826064782152156371143894916776}{3636929442415063353433926923133849068061007172615253} a^{2} + \frac{443874533073912813658297549634117232310032718625605}{1212309814138354451144642307711283022687002390871751} a - \frac{271399777136149939112162445397918688890383753566883}{808206542758902967429761538474188681791334927247834}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5499663708.5292225 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.8281.1, 7.1.626971072.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |