Normalized defining polynomial
\( x^{21} - 6 x^{19} - 4 x^{18} - 18 x^{17} - 24 x^{16} + 19 x^{15} + 54 x^{14} + 522 x^{13} + 1304 x^{12} + 1296 x^{11} + 576 x^{10} - 633 x^{9} - 2916 x^{8} - 13608 x^{7} - 45144 x^{6} - 83808 x^{5} - 91296 x^{4} - 60544 x^{3} - 24192 x^{2} - 5376 x - 512 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2353751941135020071372391918228738048=-\,2^{12}\cdot 3^{21}\cdot 11^{9}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{4} a^{11} + \frac{3}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{3}{32} a^{14} + \frac{1}{8} a^{13} - \frac{1}{32} a^{12} + \frac{1}{16} a^{11} - \frac{21}{64} a^{10} + \frac{3}{16} a^{9} + \frac{13}{32} a^{8} - \frac{1}{16} a^{7} - \frac{3}{8} a^{6} - \frac{1}{4} a^{5} + \frac{7}{64} a^{4} - \frac{11}{32} a^{3} - \frac{7}{16} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{512} a^{17} + \frac{9}{256} a^{15} + \frac{15}{128} a^{14} - \frac{25}{256} a^{13} + \frac{1}{64} a^{12} - \frac{61}{512} a^{11} - \frac{37}{256} a^{10} + \frac{121}{256} a^{9} + \frac{13}{64} a^{8} - \frac{3}{32} a^{7} + \frac{5}{16} a^{6} + \frac{103}{512} a^{5} - \frac{57}{128} a^{4} - \frac{1}{4} a^{3} + \frac{1}{64} a^{2} + \frac{15}{32} a - \frac{5}{16}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{9}{2048} a^{16} - \frac{13}{512} a^{15} - \frac{213}{2048} a^{14} + \frac{91}{1024} a^{13} - \frac{589}{4096} a^{12} - \frac{109}{256} a^{11} + \frac{963}{2048} a^{10} + \frac{321}{1024} a^{9} - \frac{7}{16} a^{8} + \frac{295}{4096} a^{6} - \frac{729}{2048} a^{5} - \frac{87}{512} a^{4} + \frac{241}{512} a^{3} - \frac{1}{128} a^{2} - \frac{9}{32} a + \frac{21}{64}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{11}{16384} a^{17} - \frac{35}{8192} a^{16} + \frac{403}{16384} a^{15} + \frac{51}{512} a^{14} - \frac{3365}{32768} a^{13} + \frac{1765}{16384} a^{12} + \frac{5779}{16384} a^{11} + \frac{1727}{4096} a^{10} - \frac{1697}{4096} a^{9} + \frac{31}{64} a^{8} - \frac{14041}{32768} a^{7} - \frac{1}{16} a^{6} - \frac{2517}{8192} a^{5} + \frac{415}{4096} a^{4} + \frac{717}{2048} a^{3} - \frac{113}{512} a^{2} + \frac{121}{512} a - \frac{85}{256}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} - \frac{1}{131072} a^{18} - \frac{1}{32768} a^{17} - \frac{17}{131072} a^{16} - \frac{23}{65536} a^{15} - \frac{165}{262144} a^{14} - \frac{69}{65536} a^{13} - \frac{15}{131072} a^{12} + \frac{311}{65536} a^{11} + \frac{473}{32768} a^{10} + \frac{509}{16384} a^{9} + \frac{15655}{262144} a^{8} + \frac{14197}{131072} a^{7} + \frac{10795}{65536} a^{6} + \frac{161}{1024} a^{5} - \frac{43}{8192} a^{4} - \frac{2939}{8192} a^{3} + \frac{211}{4096} a^{2} + \frac{11}{1024} a + \frac{1}{1024}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9059123590.66 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.1.38014691.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.12.16 | $x^{12} - 16 x^{10} - 23 x^{8} + 24 x^{6} - 29 x^{4} - 8 x^{2} - 13$ | $2$ | $6$ | $12$ | 12T134 | $[2, 2, 2, 2, 2, 2]^{6}$ | |
| $3$ | 3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
| 3.9.9.1 | $x^{9} + 54 x^{5} + 27 x^{3} + 189$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ | |
| 3.9.9.4 | $x^{9} + 3 x^{6} + 9 x^{4} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| $11$ | 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.12.8.1 | $x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |