Properties

Label 21.3.22462967310...0763.1
Degree $21$
Signature $[3, 9]$
Discriminant $-\,7^{35}\cdot 181^{3}$
Root discriminant $53.83$
Ramified primes $7, 181$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 21T45

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-139, 581, -784, 1505, -3136, 2639, -4704, 5228, -3360, 7007, -1232, 5733, -224, 2940, -16, 952, 0, 189, 0, 21, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 + 21*x^19 + 189*x^17 + 952*x^15 - 16*x^14 + 2940*x^13 - 224*x^12 + 5733*x^11 - 1232*x^10 + 7007*x^9 - 3360*x^8 + 5228*x^7 - 4704*x^6 + 2639*x^5 - 3136*x^4 + 1505*x^3 - 784*x^2 + 581*x - 139)
 
gp: K = bnfinit(x^21 + 21*x^19 + 189*x^17 + 952*x^15 - 16*x^14 + 2940*x^13 - 224*x^12 + 5733*x^11 - 1232*x^10 + 7007*x^9 - 3360*x^8 + 5228*x^7 - 4704*x^6 + 2639*x^5 - 3136*x^4 + 1505*x^3 - 784*x^2 + 581*x - 139, 1)
 

Normalized defining polynomial

\( x^{21} + 21 x^{19} + 189 x^{17} + 952 x^{15} - 16 x^{14} + 2940 x^{13} - 224 x^{12} + 5733 x^{11} - 1232 x^{10} + 7007 x^{9} - 3360 x^{8} + 5228 x^{7} - 4704 x^{6} + 2639 x^{5} - 3136 x^{4} + 1505 x^{3} - 784 x^{2} + 581 x - 139 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-2246296731094095348200059697976870763=-\,7^{35}\cdot 181^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $53.83$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 181$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{13} a^{18} + \frac{5}{13} a^{17} + \frac{5}{13} a^{16} - \frac{6}{13} a^{15} + \frac{5}{13} a^{14} - \frac{3}{13} a^{13} + \frac{2}{13} a^{11} - \frac{3}{13} a^{10} + \frac{4}{13} a^{9} - \frac{3}{13} a^{8} + \frac{4}{13} a^{7} - \frac{6}{13} a^{6} + \frac{6}{13} a^{5} - \frac{1}{13} a^{4} - \frac{6}{13} a^{3} + \frac{2}{13} a^{2} + \frac{1}{13} a - \frac{6}{13}$, $\frac{1}{13} a^{19} + \frac{6}{13} a^{17} - \frac{5}{13} a^{16} - \frac{4}{13} a^{15} - \frac{2}{13} a^{14} + \frac{2}{13} a^{13} + \frac{2}{13} a^{12} + \frac{6}{13} a^{10} + \frac{3}{13} a^{9} + \frac{6}{13} a^{8} - \frac{3}{13} a^{6} - \frac{5}{13} a^{5} - \frac{1}{13} a^{4} + \frac{6}{13} a^{3} + \frac{4}{13} a^{2} + \frac{2}{13} a + \frac{4}{13}$, $\frac{1}{13} a^{20} + \frac{4}{13} a^{17} + \frac{5}{13} a^{16} - \frac{5}{13} a^{15} - \frac{2}{13} a^{14} - \frac{6}{13} a^{13} - \frac{6}{13} a^{11} - \frac{5}{13} a^{10} - \frac{5}{13} a^{9} + \frac{5}{13} a^{8} - \frac{1}{13} a^{7} + \frac{5}{13} a^{6} + \frac{2}{13} a^{5} - \frac{1}{13} a^{4} + \frac{1}{13} a^{3} + \frac{3}{13} a^{2} - \frac{2}{13} a - \frac{3}{13}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 14319829769.0 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

21T45:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 8232
The 55 conjugacy class representatives for t21n45 are not computed
Character table for t21n45 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 28 siblings: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ R $21$ ${\href{/LocalNumberField/13.7.0.1}{7} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ $21$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.7.0.1}{7} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ $21$ ${\href{/LocalNumberField/41.7.0.1}{7} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ ${\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ $21$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
$181$$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$
181.7.0.1$x^{7} - x + 2$$1$$7$$0$$C_7$$[\ ]^{7}$
181.7.0.1$x^{7} - x + 2$$1$$7$$0$$C_7$$[\ ]^{7}$